Skip to main content

Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation from Contrast Enhanced CT

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

Non-contrast CT is often preferred in clinical screening while segmentation of such CT data is more challenging due to the low contrast in tissue boundaries and scarce supervised training data than contrast-enhanced CT (CTce) segmentation. To alleviate manual labelling work of radiologists, we generate training samples for 3D U-Net segmentation network by transforming the existing CTce liver segmentation dataset to the non-contrast CT styled volumes with CycleGAN. We validated the performance of CycleGAN in both unsupervised and hybrid supervised training strategy. The results show that using CycleGAN in unsupervised segmentation can achieve higher mean Dice coefficients than fully supervised manner in liver segmentation. The hybrid training of generated samples and the target task samples can improve the generalization ability of segmentation.

C. Song and B. He—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, C., et al.: Fully automatic liver segmentation using a probability atlas registration. In: O’Conner, L. (ed.) Proceedings of ICECC, pp. 126–129. IEEE Computer Society Press (2012)

    Google Scholar 

  2. Xu, L.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Google Scholar 

  3. Seo, H., Huang, C., Bassenne, M., Xiao, R., Xing, L.: Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE Trans. Med. Imaging 39(5), 1316–1325 (2020)

    Article  Google Scholar 

  4. Heimman, T., van Ginneken, B., Styner, M.A., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  5. Bilic, P., Christ, P.R., Vorontsov, E., et al.: The liver tumor segmentation benchmark (LiTS). arXiv reprint. arXiv: 1901.040506 (2019)

    Google Scholar 

  6. Insideradiology Homepage. https://www.insideradiology.com.au/iodine-containing-contrast-medium-hp/

  7. Tomoshige, S., Oost, E., Shimizu, A., et al.: A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Med. Image Anal. 18(1), 130–143 (2014)

    Article  Google Scholar 

  8. Goksel, O., Foncubierta-Rodríguez, A., Jimenez-del-Toro, O., et al.: Overview of the VISCERAL challenge at ISBI 2015. In: Goksel, O. (ed.) Proceedings of the VISCERAL Anatomy Grand Challenge at the 2015 IEEE International Symposium on Biomedical Imaging (ISBI), New York, NY, 16 April 2015

    Google Scholar 

  9. Zhu, J., Park. T., Isola, P., Efros, A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, pp. 2242–2251 (2017)

    Google Scholar 

  10. Jiang, J., et al.: Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 777–785. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_86

    Chapter  Google Scholar 

  11. Liu, L., Muelly, M., Deng, J., Pfister, T., Li, L.: Generative modeling for small-data object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2019, Seoul, Korea (South), pp. 6072–6080 (2019)

    Google Scholar 

  12. Chen, C., Dou, Q., Chen, H., et al.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Isensee, F., Petersen, J., Klein, A., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

Download references

Acknowledgments

This work was partially supported by the National Key Research and Development Program (2019YFC0118100 and 2017YFC0110903), the Guangdong Key Area Research and Development Program (2020B010165004), the Shenzhen Key Basic Science Program (JCYJ20170413162213765 and JCYJ20180507182437217), the Shenzhen Key Laboratory Program (ZDSYS201707271637577), the NSFC-Shenzhen Union Program (U1613221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, C., He, B., Chen, H., Jia, S., Chen, X., Jia, F. (2020). Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation from Contrast Enhanced CT. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics