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Abstract. Atlas-based methods are the standard approaches for auto-
matic targeting of the Anterior Nucleus of the Thalamus (ANT) for Deep
Brain Stimulation (DBS), but these are known to lack robustness when
anatomic differences between atlases and subjects are large. To improve
the localization robustness, we propose a novel two-stage deep learning
(DL) framework, where the first stage identifies and crops the thalamus
regions from the whole brain MRI and the second stage performs per-
voxel regression on the cropped volume to localize the targets at the finest
resolution scale. To address the issue of data scarcity, we train the models
with the pseudo labels which are created based on the available labeled
data using multi-atlas registration. To assess the performance of the pro-
posed framework, we validate two sampling-based uncertainty estimation
techniques namely Monte Carlo Dropout (MCDO) and Test-Time Aug-
mentation (TTA) on the second-stage localization network. Moreover,
we propose a novel uncertainty estimation metric called maximum ac-
tivation dispersion (MAD) to estimate the image-wise uncertainty for
localization tasks. Our results show that the proposed method achieved
more robust localization performance than the traditional multi-atlas
method and TTA could further improve the robustness. Moreover, the
epistemic and hybrid uncertainty estimated by MAD could be used to
detect the unreliable localizations and the magnitude of the uncertainty
estimated by MAD could reflect the degree of unreliability for the re-
jected predictions.

Keywords: Deep Brain Stimulation · Anterior Nucleus of Thalamus ·
Medical Image Localization · Uncertainty Estimation · Pseudo Labels

1 Introduction

Epilepsy is one of the most common chronic neurological disorders characterized
by spontaneous recurrent seizures and affects around 70 million patients world-
wide [1]. Over 30% of the epilepsy patients have refractory seizures which may
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carry risks of structural damage to the brain and nervous system, comorbidities,
and increased mortality [2]. Deep Brain Stimulation (DBS) is a recently FDA-
approved neurostimulation therapy that can effectively reduce the occurrences
of refractory seizures by delivering electric impulses to a deep brain structure
called the anterior nucleus of the thalamus (ANT). Accurate localization of the
ANT target is however difficult because of the well documented variability in
the ANT size and shape and thalamic atrophy caused by persistent epileptic
seizures [3]. Currently, the standard approach to automate this process is the
atlas-based technique. While popular, atlas-based methods are known to lack
robustness when anatomic differences between atlases and subjects are large.
This is particularly acute for ANT-DBS targets that are close to the ventricles,
which can be severely enlarged in some patients.

Over the past decade, DL-based techniques such as convolutional neural net-
works (CNN) have emerged as powerful tools and have achieved unprecedented
performances in many medical imaging tasks. However, to train sufficiently ro-
bust and accurate models, deep learning methods typically require large amounts
of labeled data, which is expensive to collect, especially in the medical domain.
In the case of data scarcity and noisy labels, insufficiently trained models may
fail catastrophically without any indication. Hence, it is extremely desirable for
deep learning models to estimate the uncertainties regarding their outputs in
these scenarios. The predictive uncertainty of neural networks can be catego-
rized into two types: epistemic uncertainty and aleatoric uncertainty. Epistemic
uncertainty, also known as model uncertainty, accounts for the uncertainty in the
model and can be explained away by observing more training data. On the other
hand, the aleatoric uncertainty is the input-dependent uncertainty that captures
the noise and randomness inherent in observations. Recently, uncertainty esti-
mation has also received increasing attention in medical image analysis. Ayhan
et al. [4] proposed to estimate the heteroscedastic aleatoric uncertainty using
TTA for classification task. Nair et al. [5] explored the uncertainty estimation
for lesion detection and segmentation tasks based on MCDO. Wang et al. [6]
proposed a theoretical formulation of TTA and demonstrated its effectiveness in
uncertainty estimation for segmentation task. Nevertheless, uncertainty estima-
tion for localization tasks has not been well studied.

In this work, we developed a novel two-stage deep learning framework aim-
ing at robustly localizing the ANT targets. To the best of our knowledge, this is
the first work to develop a learning-based approach for this task. To overcome
the problem of data scarcity, we train the models with the pseudo labels which
are created based on the available gold-standard annotations using multi-atlas
registration. Moreover, we validate two sampling-based uncertainty estimation
techniques to assess the localization performance of the developed method. We
also propose a novel metric called MAD for sampling-based uncertainty esti-
mation methods in localization tasks. Our experimental results show that the
proposed method achieved more robust localization performance than the tradi-
tional multi-atlas method and TTA could further improve the robustness. Lastly,
we show that the epistemic and hybrid uncertainty estimated by MAD can be
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used to detect the unreliable localizations and the magnitude of MAD can reflect
the degree of unreliability when the predictions are rejected.

2 Materials and Methods

2.1 Data

Our own dataset consists of 230 T1-weighted MRI scans from a database of pa-
tients who underwent a DBS implantation for movement disorders, i.e., Parkin-
son Disease or Essential Tremor at Vanderbilt University. The resolution of the
images varies from 0.4356×0.4356×1 mm3 to 1×1×6 mm3. The ground truth
was manually annotated on a different dataset collected by an experienced neu-
rosurgeon. In this dataset, the 3D coordinates of eight ANT targets (one on
each side) on four MRI scans were identified and the thalamus mask on one of
these volumes was delineated. With the available annotations, we generated the
pseudo labels for the ANT targets and for the thalamus masks using multi and
single-atlas registration [7]. In this study, 200 MRI scans were randomly selected
for training and validation and the remaining 30 images were used for testing.
For preprocessing, we use trilinear interpolation to resample all the images to
isotropic voxel sizes of 1×1×1 mm3 and rescale the image intensities to [0, 1].

2.2 Proposed Method

Typically, an MRI scan with original resolution cannot be fed to a 3D CNN
directly due to the limitation of computational resource. A common approach
to solve this problem, i.e., using downsampled images, is not appropriate here
because the downsampling operation unavoidably leads to a loss in image reso-
lution. This is a concern in our application because even a few-voxel shift in the
deep brain can lead to target predictions that are unacceptable for clinical use.
To address this issue, we propose a two-stage framework where the first stage
coarsely identifies and crops the thalamus regions from the whole brain MRI
and the second stage performs per-voxel regression on the cropped volume to
localize the targets at the finest resolution scale.

The workflow of the proposed framework is shown in Figure 1. In this first
stage, we train a 3D U-net [8] using the downsampled 80×80×80 MRI scans to
coarsely segment the thalamus. The output layer of this network has three chan-
nels corresponding to background, left thalamus and right thalamus respectively.
Once we obtain the segmentation results, we post-process the binary segmenta-
tion from each foreground channel by isolating the largest connected component
and resample the results back to the original resolution. Thereafter, we compute
the bounding box of each isolated component and crop a 64×64×64 mm3 vol-
ume around its center. The cropped volume fully encloses the entire left or right
thalamus as well as its contextual information. Before passing the volumes to
the second stage, we flip the left-thalamus volumes in the left-right direction so
that the inputs of the second stage have consistent orientations. In the second
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Fig. 1. The workflow of the proposed two-stage framework and the 3D U-net architec-
ture we used. The segmentation and localization network share the same architecture.
The number below each encode/decoder unit is the channel number of the 3×3×3
convolution kernels.

stage, we employ another 3D U-net with the same architecture to localize the
ANT target by performing per-voxel regression on the cropped volumes. Since
the cropped volumes have the same resolution as the original MRI, there is
no performance degradation in localization due to loss in resolution. To allow
volume-to-volume mapping, we design the ground truth map to be a 3D Gaus-
sian function centered at the pseudo label position with a standard deviation of
1.5 mm. The maximum value is scaled to 1 and any value below 0.05 is set to 0.
During the testing phase, the left-thalamus localization maps are flipped back
to the original orientation and the voxel with the maximum activation in each
localization map is taken as the final prediction.

2.3 Uncertainty Estimation

Epistemic Uncertainty We estimate the epistemic uncertainty of the lo-
calization task using the dropout variational inference. Specifically, we train
the model with dropout (same as the baseline method) and during the test-
ing phase we perform T stochastic forward passes with dropout to generate
Monte Carlo samples from the approximate posterior. Let y = f(x) be the
network mapping from input x to output y. Let T be the number of Monte
Carlo samples and Ŵt be the sampled model weights from MCDO. For re-
gression tasks, the final prediction and the epistemic uncertainty can be esti-

mated by calculating the predictive mean E(y) ≈ 1
T

∑T
t=1 f

Ŵt(x) and variance

V ar(y) ≈ 1
T

∑T
t=1 f

Ŵt(x)T fŴt(x)− E(y)TE(y) from these samples.

Aleatoric Uncertainty To estimate the aleatoric uncertainty, we use the TTA
technique which is a simple yet effective approach to study locality of testing sam-
ples. Recently, Wang et al. [6] provided a theoretical formulation for using TTA
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to estimate a distribution of prediction by Monte Carlo simulation with prior
distributions of image transformation and noise parameters in an image acquisi-
tion model. In our image acquisition model, we extend this idea by incorporating
both spatial transformations Ts and intensity transformation Ti to simulate the
variations of spatial orientations and image brightness and contrast respectively.
Our image acquisition model can thus be expressed as: x = Ts(Ti(x0)), where
x is our observed testing image and x0 is the image without transformations
in latent space. During the testing phase, we aim to reduce the bias caused by
transformations in x by leveraging the latent variable x0. Given the prior dis-
tributions of the transformation parameters in Ts and Ti, we can estimate y
by generating N Monte Carlo samples and the nth Monte Carlo sample can be
inferred as: yn = Tsn(y0n) = Tsn(f(x0n)) = Tsn(f(T−1

in
(T−1

sn (xn)))). The final
prediction and aleatoric uncertainty can be obtained by computing the mean
and variance from the Monte Carlo samples.

Maximum Activation Dispersion For regression tasks, the uncertainty maps
are typically obtained by computing the voxel-wise variance from the Monte
Carlo samples. However, this approach fails to generate useful uncertainty maps
in our application. In our ground truth maps, the non-zero elements, i.e., fore-
ground voxels within the Gaussian ball, are very sparse compared to the zero
elements, and thus more difficult to localize and more likely to produce larger
predictive variance. As a result, such uncertainty maps would display higher
uncertainty at the predicted targets even if the targets are correctly localized
(Figure 2), and thus are not effective for uncertainty estimation regarding the
localization performance. To address this issue, we propose a novel metric called
Maximum Activation Dispersion (MAD) which can be directly applied to any
sampling-based uncertainty estimation technique. This metric measures the con-
sistency of the maximum activation positions of the Monte Carlo samples and
ignores the activation variance at the same position. Note that MAD aims at
estimating the image-wise uncertainty regarding the overall localization perfor-
mance instead of voxel-wise uncertainty produced by uncertainty maps. Let N
be the number of Monte Carlo samples and pn = (xn, yn, zn) be the maximum
activation position of the nth Monte Carlo sample. The maximum activation
dispersion is computed as 1

N

∑N
n=1 ‖pn − p̄‖, where ‖ · ‖ is the L2 norm and

p̄ = 1
N

∑N
n=1 pn is the geometric center of all maximum activation positions.

2.4 Implementation Details

Two five-level 3D U-nets with the same architecture were used in the proposed
two-stage framework (Figure 1). In the first stage (segmentation), optimization
was performed using the Adam optimizer with a learning rate of 5× 10−4 , with
Dice loss as the loss function, a batch size of 3, and early stopping based on
validation loss with patience of 10 epochs. In the second stage (localization),
dropout layers were added to allow MCDO. As suggested by Kendall et al.
[9], applying dropout layers to all the encoders and decoders is too strong a
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Fig. 2. Visualization of some Monte Carlo samples (A-L) by TTA, their mean (lo-
calization map) and variance (uncertainty map). The uncertainty map displays higher
uncertainties at the correctly localized position and thus is not effective for localization
uncertainty estimation.

regularizer. To avoid poor training fit, we followed the best dropout configuration
in [9] by adding dropout layers with a dropout rate of p = 0.5 only at the deepest
half of encoders and decoders. During training, optimization was performed using
the Adam optimizer with a learning rate of 2× 10−4 , with a batch size of 6, and
early stopping based on validation loss with patience of 5 epochs. A weight decay
of 5× 10−4 was used. The weighted mean squared error (WMSE) was used as the
loss function to alleviate the class imbalance issue by assigning higher weights to
the sparse non-zero entries. The models with the smallest validation losses were
selected for final evaluation.

During the testing phase, we forward passed the testing image once to the
deterministic network with dropout turned off (baseline). With a given prior
distribution of transformation parameters in image acquisition model, we for-
ward passed the stochastically transformed testing image N = 100 times to
the deterministic network with dropout turned off and transformed the pre-
dictions back to the original orientation. The mean and variance (aleatoric
uncertainty) of the Monte Carlo samples were obtained (baseline + TTA).
In the image acquisition model, the spatial transformations were modeled by
translation and rotation along arbitrary axis. The intensity transformation was
modeled by a smooth and monotonous function called Bézier Curve, which is
generated using two end points P0 and P3 and two control points P1 and P2:
B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1]. In particular, we
set P0 = (0, 0) and P3 = (1, 1) to obtain an increasing function to avoid invalid
transformations. The prior distributions of the spatial and intensity transfor-
mation parameters were modeled by uniform distribution U as s ∼ U(s0, s1),
r ∼ U(r0, r1) and t ∼ U(t0, t1), where s, r and t represent translation (voxels),
rotation angle (degrees) and the fractional value for Bézier Curve. In our exper-
iment, we set s0 = −10, s1 = 10, r0 = −20, r1 = 20, t0 = 0 and t1 = 1. Lastly,
we forward passed the same testing image to the stochastic network T = 100
times with dropout turned on with a rate of p = 0.5 and obtained the mean
and variance (epistemic uncertainty) of the Monte Carlo samples (baseline +
MCDO).
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In our experiment, we evaluated the localization performances of the multi-
atlas, baseline, baseline + TTA and baseline + MCDO methods on 30 testing
images (60 targets). The axial, sagittal and coronal views centered at the targets
predicted by each method were provided to an experienced neurosurgeon to
evaluate whether the predicted targets are acceptable for clinical use (the order
was shuffled and the evaluator was blind to the method used to predict the
target). When the predictions were evaluated as rejected, the evaluator was
asked to provide the reasons for rejection. Furthermore, we analyze the aleatoric,
epistemic and hybrid (aleatoric + epistemic) uncertainties estimated by MAD
on the baseline rejected cases.

3 Experimental Results

Our results show that among a total number of 60 targets, 53, 55, 57 and 55
targets were evaluated as acceptable for the multi-atlas, baseline, baseline +
TTA and baseline + MCDO respectively. In Figure 3, we show the boxplots
of aleatoric, epistemic and hybrid uncertainties estimated by MAD. It can be
observed that when the rejected predictions are far away from the acceptable
positions (red and blue), their estimated uncertainty correspond to the outliers
above the upper whisker in the boxplots of epistemic and hybrid uncertainty.
On the other hand, when the rejected predictions are close to the acceptable
positions (cyan, green and magenta), their uncertainties fall in the range of
upper quartile and the upper whisker (cyan and green) and the range of lower
quartile and median (magenta), corresponding to their degree of unreliability.

Fig. 3. Boxplots of aleatoric, epistemic and hybrid uncertainties estimated by MAD
on the testing set (60 targets). The rejected cases of the baseline method (5 cases) are
shown in color. The axial, sagittal and coronal views of the rejected targets are shown
with the reasons for rejection provided by the evaluator.



8 H. Liu et al.

It can be observed that the epistemic and hybrid uncertainty estimated by
MAD could be used to detect unreliable localizations, i.e., the ones that not
even in thalamus. Moreover, the magnitudes of MAD could reflect the degree
of unreliability when the predictions were rejected. We also observe that even
though the MCDO did not improve the localization robustness compared to the
baseline method, the epistemic uncertainty obtained by this technique has great
value for detecting the unreliable localizations, i.e., the outliers in the boxplot.

4 Conclusion

In this study, we present a two-stage deep learning framework to robustly localize
the ANT-DBS targets in MRI scans. Results show that the proposed method
achieved more robust localization performance than the traditional multi-atlas
method and TTA-based aleatoric uncertainty estimation can further improve the
localization robustness. We also show that the proposed MAD is a more effective
uncertainty estimation metric for localization tasks.
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8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016,
October). 3D U-Net: learning dense volumetric segmentation from sparse annota-
tion. In International conference on medical image computing and computer-assisted
intervention (pp. 424-432). Springer, Cham.

9. Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene under-
standing. arXiv preprint arXiv:1511.02680.

http://arxiv.org/abs/1511.02680

	Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation

