Skip to main content

Semi-supervised Classification of Chest Radiographs

  • Conference paper
  • First Online:
  • 1360 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12446))

Abstract

To train deep learning models in a supervised fashion, we need a significant amount of training data, but in most medical imaging scenarios, there is a lack of annotated data available. In this paper, we compare state-of-the-art semi-supervised classification methods in a medical imaging scenario. We evaluate the performance of different approaches in a chest radiograph classification task using the ChestX-ray14 dataset. We adapted methods based on pseudo-labeling and consistency regularization to perform multi-label classification and to use a state-of-the-art model architecture in chest radiograph classification. Our proposed approaches resulted in average AUCs up to 0.6691 with only 25 labeled samples per class, and an average AUC of 0.7182 when using only 2% of the labeled data, achieving results superior to previous approaches on semi-supervised chest radiograph classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amir, G.J., Lehmann, H.P.: After detection: the improved accuracy of lung cancer assessment using radiologic computer-aided diagnosis. Acad. Radiol. 23(2), 186–191 (2016)

    Article  Google Scholar 

  2. Aviles-Rivero, A.I., et al.: GraphXNET chest X-ray classification under extreme minimal supervision. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 504–512. Springer (2019)

    Google Scholar 

  3. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: MixMatch: a holistic approach to semi-supervised learning, May 2019

    Google Scholar 

  4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical data augmentation with no separate search. arXiv preprint arXiv:1909.13719 (2019)

  5. Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A.P., Palmer, L.J.: Detecting hip fractures with radiologist-level performance using deep neural networks. arXiv preprint arXiv:1711.06504 (2017)

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  8. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML (2013)

    Google Scholar 

  9. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  10. Liu, Q., Yu, L., Luo, L., Dou, Q., Heng, P.A.: Semi-supervised medical image classification with relation-driven self-ensembling model. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  11. Qi, G.J., Luo, J.: Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods. arXiv preprint (2019)

    Google Scholar 

  12. Rajpurkar, P., et al.: ChexNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  13. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence (2020)

    Google Scholar 

  14. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results, March 2017

    Google Scholar 

  15. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-Ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. CoRR (2017)

    Google Scholar 

  16. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv preprint arXiv:1904.12848 (2019)

  17. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo H. P. Pooch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pooch, E.H.P., Ballester, P., Barros, R.C. (2020). Semi-supervised Classification of Chest Radiographs. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics