
Correctness by construction
for probabilistic programs?

Annabelle McIver1 and Carroll Morgan2

1 University of New South Wales & Trustworthy Systems, Data61, CSIRO
carroll.morgan@unsw.edu.au

2 Macquarie University anabelle.mciver@mq.edu.au

Abstract. The “correct by construction” paradigm is an important
component of modern Formal Methods, and here we use the probabilis-
tic Guarded-Command Language pGCL to illustrate its application to
probabilistic programming.

pGCL extends Dijkstra’s guarded-command language GCL with prob-
abilistic choice, and is equipped with a correctness-preserving refinement
relation (v) that enables compact, abstract specifications of probabilis-
tic properties to be transformed gradually to concrete, executable code
by applying mathematical insights in a systematic and layered way.

Characteristically for “correctness by construction”, as far as possible
the reasoning in each refinement-step layer does not depend on earlier
layers, and does not affect later ones.

We demonstrate the technique by deriving a fair-coin implementation
of any given discrete probability distribution. In the special case of sim-
ulating a fair die, our correct-by-construction algorithm turns out to be
“within spitting distance” of Knuth and Yao’s optimal solution.

1 Testing probabilistic programs?

Edsger Dijkstra argued [1, p3] that the construction of correct programs requires
mathematical proof, since “. . . program testing can be used very effectively to
show the presence of bugs but never to show their absence.” But for programs
that are constructed to exhibit some form of randomisation, regular testing can’t
even establish that presence: odd program traces are almost always bound to
turn up even in correctly operating probabilistic systems.

Thus evidence of quantitative errors in probabilistic systems would require
many, many traces to be subjected to detailed statistical analysis — yet even
then debugging probabilistic programs remains a challenge when that evidence
has been assembled. Unlike standard (non-probabilistic programs), where a failed
test can often pinpoint the source of the offending error in the code, it’s not easy
to figure out what to change in the implementation of probabilistic programs in
order to move closer towards “correctness” rather than further away.

Without that unambiguous relationship between failed tests and the coding
errors that cause them, Dijkstra’s caution regarding proofs of programs is even

? We are grateful for the support of the Australian Research Council.

ar
X

iv
:2

00
7.

15
24

6v
1

 [
cs

.L
O

]
 3

0
Ju

l 2
02

0

2 Annabelle McIver and Carroll Morgan

more apposite. In this paper we describe such a proof method for probability:
correctness-by-construction. In a sentence, to apply “CbC ” one constructs the
program and its proof at the same time, letting the requirement that there be a
proof guide the design decisions taken while constructing the program.

Like standard programs, probabilistic programs incorporate mathematical
insights into algorithms, and a correctness-by-construction method should allow
a program developer to refer rigorously to those insights by applying develop-
ment steps that preserve “probabilistic correctness”. Probabilistic correctness
is however notoriously unintuitive. For example, the solution of the infamous
Monty Hall problem caused such a ruckus in the mathematical community that
even Paul Erdös questioned the correct analysis [14]. 3 Yet once coded up as a
program [10, p22], the Monty Hall problem is only four lines long! More generally
though, many widely relied-upon programs in security are quite short, and yet
still pose significant challenges for correctness.

We describe correctness-by-construction in the context of pGCL, a small pro-
gramming language which restores demonic choice to Kozen’s landmark (purely)
probabilistic semantics [7,8] while using the syntax of Dijkstra’s GCL [2]. Its
basic principles are that correctness for programs can be described by a general-
isation of Hoare logic that includes quantitative analysis; and it has a definition
of refinement that allows programs to be developed in such a way that both
functional and probabilistic properties are preserved. 4

2 Enabling Correctness by Construction — pGCL

The setting for correctness-by-construction of probabilistic programs is provided
by pGCL –the probabilistic Guarded-Command Language– which contains both
abstraction and (stepwise) refinement [10]. We begin by reviewing its origins,
then its treatment of probabilistic choice and demonic choice, and finally its
realisation of CbC.

(This section can be skimmed on first reading: just collect pGCL syntax from
Figs. 2–4, and then skip directly to Sec. 3.)

As we will not be treating non-terminating programs, we can base our de-
scription here on quite simple models for sequential (non-reactive) programs.
The state space is some set S and, in its simplest terms, a program takes an
initial state to a final state: it (its semantics) therefore has type S→S.

The three subsections that follow describe logics based on successive enrich-
ments of this, the simplest model, and even the youngest of those logics is by
now almost 25 years old: thus we will be “reviewing” rather than inventing.

3 A game show host, Monty Hall, shows a contestant three curtains, behind one of
which sits a Cadillac; the other two curtains conceal goats. The contestant guesses
which curtain hides the prize, and Monty then opens another that concealed a goat.
The contestant is allowed to change his mind. Should he?

4 If the program is a mathematical object, then as Andrew Vazonyi [14] pointed out:
“I’m not interested in ad hoc solutions invented by clever people. I want a method
that works for lots of problems. . . One that mere mortals can use. Which is what a
correctness-by-construction method should be.”

Correctness by construction for probabilistic programs 3

The first enrichment, Sec. 2.1, is based on the model S→PS that allows de-
monic nondeterminism, 5 so facilitating abstraction; then in Sec. 2.2 the model
S→DS replaces demonic nondeterminism by probabilistic choice, losing abstrac-
tion (temporarily) but in its place gaining the ability to describe probabilistic
outcomes; and finally in Sec. 2.3 the model S→PDS restores demonic nondeter-
minism, allowing programs that can abstract from precise probabilities. Using
syntax we will make more precise in those sections, simple examples of the three
increments in expressivity are

(1) x:= H Set variable x to H (as in any sequential language);

(2) x:∈ {H,T} Set x’s value demonically from the set {H, T};
(3) x:∈ H 2/3⊕ T Set x’s value from the set {H, T} with probability 2/3

for H and 1/3 for T, a “biased coin”; and

(4) x:∈ H 1/3⊕1/3 T Set x from the set {H, T} with probability at least 1/3
each way, a “capricious coin”.

The last example of those (4) is the most general: for (3) is x:∈ H 2/3⊕1/3 T;
and (2) is x:∈ H 0⊕0 T; and finally (1) is x:∈ H 1⊕0 T.

2.1 Floyd/Hoare/Dijkstra: pre- and postconditions: (1,2) above

We assume a typical sequential programming language with variables, expres-
sions over those variables, assignment (of expressions to variables), sequential
composition (semicolon or line break), conditionals and loops. It is more or less
Dijkstra’s guarded command language [2], and is based on the model S→PS,
where PS is the set of all subsets of S.

The weakest precondition of program Prog in such a language, with respect
to a postcondition post given as a first-order formula over the program variables,
is written wp(Prog ,post) and means

the weakest formula (again on the program variables) that must hold
before Prog executes in order to ensure that post holds after Prog

executes [2].

In a typical compositional style, the wp of a whole program is determined by the
wp of its components.

We group Dijkstra, Hoare and Floyd together because the Dijkstra-style im-
plication pre⇒wp(Prog , post) has the same meaning as the Hoare-style triple
{pre } Prog {post } which in turn has the same meaning as the original Floyd-
style flowchart annotation, as shown in Fig. 1 [3,4]. All three mean “If pre holds
of the state before execution of Prog , then post will hold afterwards.”

Finally, a notable –but incidental– feature of Dijkstra’s approach was that
(demonic) nondeterminism arose naturally, as an abstraction from possible con-
crete implementations. 6 That is why we use S→PS rather than S→S here.

5 Constructor P is “subsets of” and D is “discrete distributions on”.
6 See Sec. 3.5 for a further discussion of this.

4 Annabelle McIver and Carroll Morgan

x = 1

x = 2

x:= x+1

pre

Prog

post

At left is a “generic” Floyd annotation of a flowchart containing only one
program element. If the annotation pre holds “on the way in” to the program
Prog , then annotation post will hold on the way out. At right is an example
with specific annotations and a specific program.

In the Hoare style the right-hand example would be written

{x = 1} x:= x+1 {x = 2} .

In the Dijsktra style it would be written x=1⇒ wp(x:= x+1, x=2).
They all three have the same meaning.

Fig. 1. Floyd-style annotated flowchart

In later work (by others) that abstraction was made more explicit by includ-
ing explicit syntax for a binary “demonic choice” between program fragments,
a composition Left u Right that could behave either as the program Left or
as the program Right . But that operator (u) was not really an extension of
Dijkstra’s work, because his (more verbose) conditional

IF True → Left – If True holds, then this branch may be taken.

True → Right – If True holds, then also this branch may be taken.

FI – (Dijkstra terminated all IF’s with FI’s.)

was there in his original guarded-command language, introducing demonic choice
naturally as an artefact of the program-design process — and it expressed exactly
the same thing. The (u) merely made it explicit.

2.2 Kozen: probabilistic program logic: (3) above

Kozen extended Dijkstra-style semantics to probabilistic programs, again over a
sequential programming language but now based on the model S→DS, where
DS is set of all discrete distributions in S. 7 He replaced Dijkstra’s demonic
nondeterminism (u) by a “probabilistic nondeterminism” operator (p⊕) between
programs, understood so that Left p⊕ Right means “Execute Left with prob-
ability p and Right with probability 1−p.” The probability p is (very) often 1/2

7 Kozen’s work did not restrict to discrete distributions; but that is all we need here.

Correctness by construction for probabilistic programs 5

so that coin:= Heads 1/2⊕ coin:= Tails means “Flip a fair coin.” But prob-
ability p can more generally be any real number, and more generally still it can
even be an expression in the program variables.

Kozen’s corresponding extension of Floyd/Hoare/Dijkstra [7,8] replaced Dij-
kstra’s logical formulae with real-valued expressions (still over the program vari-
ables); we give examples below. The “original” Dijkstra-style formulae remain
as a special case where real number 1 represents True and 0 represents False;
and Dijkstra’s definitions of wp simply carry through essentially as they are. . .
except that an extra definition is necessary, for the new construct (p⊕), where
Kozen defines that

wp(Left p⊕ Right , post)

is p · wp(Left , post) + (1−p) · wp(Right , post) .

With this single elegant extension, it turns out that in general wp(Prog ,post)
is the expected value, given as a (real valued) expression over the initial state,
of what post will be in the final state, i.e. after Prog has finished executing
from that initial state. (The initial/final emphasis simply reminds us that it is
the same as for Dijkstra: the weakest precondition is what must be true in the
initial state for the postcondition to be true in the final state.) For example we
have that

wp(x:= 1-y 1/3⊕ x:= 3*x, x + 3) is 1/3(1−y + 3) + 2/3(3x+3) ,

that is the real-valued expression 3 1
3 + 2x− y/3 in which both x and y refer to

their values in the initial state.
More impressive though is that if we introduce the convention that brackets

[−] convert Booleans to numbers, i.e. that [True] = 1 and [False] = 0, we have
in general for Boolean-valued prop the convenient idiom

wp(Prog , [prop]) (1)

is “the probability that Prog establishes property prop ”, 8

And if –further– it happens that the “probabilistic” program Prog actually
contains no probabilistic choices at all, then (1) just above has value 1 just when
Prog is guaranteed to establish post , and is 0 otherwise: it is in that sense that
the Dijkstra-style semantics “carries through” into the Kozen extension. That
is, if Prog contains no probabilistic choice, and post is a conventional (Boolean
valued) formula, then we have

Dijkstra style [wp(Prog , post)]

is the same as Kozen style wp(Prog , [post]). 9

8 The expected value of the characteristic function [prop] of an event prop is equal
to the probability that prop itself holds.

9 Note that if Prog contains (p⊕) somewhere, the above does not apply: Dijkstra
semantics has no definition for (p⊕).

6 Annabelle McIver and Carroll Morgan

The full power of the Kozen approach, however, starts to appear in examples
like this one below: we flip two fair coins and ask for the probability that they
show the same face afterwards. Using the (Dijkstra) weakest-precondition rule
that wp(Prog1 ;Prog2 , post) is simply wp(Prog1 , wp(Prog2 ,post)), 10 we can
calculate

wp(c1:= H 1/2⊕ c1:= T; c2:= H 1/2⊕ c2:= T, [c1 = c2])
= wp(c1:= H 1/2⊕ c1:= T, wp(c2:= H 1/2⊕ c2:= T, [c1 = c2]))
= wp(c1:= H 1/2⊕ c1:= T, 1/2[c1 = H] + (1−1/2)[c1 = T])

= 1/2(1/2[H = H] + 1/2[H = T]) + 1/2(1/2[T = H] + 1/2[T = T])
= 1/2(1/2 · 1 + 1/2 · 0) + 1/2(1/2 · 0 + 1/2 · 1)

= 1/4 + 1/4
= 1/2 , that is that the probability that c1= c2 is 1/2.

A nice further exercise for seeing this probabilistic wp at work is to repeat the
above calculation when one of the coins uses (p⊕) but (1/2⊕) is retained for the
other, confirming that the answer is still 1/2.

2.3 McIver/Morgan: pre- and post-expectations

Following Kozen’s probabilistic semantics at Sec. 2.2 just above (which itself
turned out later to be a special case of Jones and Plotkin’s probabilistic pow-
erdomain contruction [5]) we restored demonic choice to the programming lan-
guage and called it pGCL [12,10]. It contains both demonic (u) and probabilistic
(p⊕) choices; its model is S→PDS; and it is the language we will use for the
correct-by-construction program development we carry out below [10]. Figures
2–4 summarise its syntax and its wp-logic.

To illustrate demonic- vs. probabilistic choice, we’ll revisit the two-coin pro-
gram from above. This time, one coin will have a probability-p bias for some
constant 0≤ p≤ 1 (thus acting as a fair coin just when p is 1/2). The other choice
will be purely demonic.

We start with the (two-statement) program

c1:= H p⊕ c1:= H

c2:= H u c2:= T ,

where the first statement is probabilistic and the second is demonic, and ask, as
earlier, “What is the probability that the two coins end up equal?” We calculate

wp(c1:= H p⊕ c1:= T; c2:= H u c2:= T, [c1 = c2])
= wp(c1:= H p⊕ c1:= T, wp(c2:= H u c2:= T, [c1 = c2]))
= wp(c1:= H p⊕ c1:= T, [c1 = H] min [c1 = T])

= p ·([H = H] min [H = T]) + (1−p)·([T = H] min [T = T])
= p ·(1 min 0) + (1−p)·(0 min 1)

10 This is particularly compelling when wp is Curried: sequential composition
wp(Prog1 ; Prog2) is then the functional composition wp(Prog1) ◦ wp(Prog2).

Correctness by construction for probabilistic programs 7

name syntax semantics

expectation
post

real-valued expression
over the program variables

(the usual)

expression E expression over the program
variables (of any type)

(the usual)

condition C Boolean-valued expression
over the program variables

(the usual)

substitution E1 [x \E2] Replace all free occurrences of x in E1

by E2 (with the usual caveats.)

assignment x := E Evaluate E ; assign it to x .
wp(x := E , post) = post [x \E]

sequential
composition

Prog1 ;Prog2 Execute Prog1 then Prog2 .

wp(Prog1 ;Prog2 , post) = wp(Prog1 , wp(Prog2 ,post))

conditional IF C THEN Prog1 ELSE Prog2 Evaluate Boolean C , then execute
Prog1 or Prog2 accordingly.

wp(IF C THEN Prog1 ELSE Prog2 , post)
= [C]·wp(Prog1 , post) + [¬C]·wp(Prog2 , post)

loop WHILE C DO Prog Evaluate Boolean C , then execute Prog

(and repeat), or exit, accordingly.

The usual least fixed point, based on
WHILE C DO Prog = IF C THEN (Prog ; WHILE C DO Prog)

The above cases cover the constructs of pGCL without probabilistic- or demonic choice,
but nevertheless defined with Kozen-style “numeric” wp’s which, applied to “post-
expectations” give “pre-expectations”.

Fig. 2. Syntax and wp-semantics for “restricted” pGCL

8 Annabelle McIver and Carroll Morgan

name syntax semantics

probabilistic
choice

Prog1 p⊕ Prog2 Evaluate p , which must be in [0, 1], then
execute Prog1 with that probability; oth-
erwise execute Prog2 .

wp(Prog1 p⊕ Prog2 , post) = p ·wp(Prog1, post)+(1-p)·wp(Prog2, post)

demonic
choice

Prog1 u Prog2 Choose demonically whether to execute
Prog1 or Prog2 .

wp(Prog1 u Prog2 , post) = wp(Prog1, post) min wp(Prog2, post)

These “extra” cases cover the probabilistic- and demonic choice constructs of pGCL.

Fig. 3. Syntax and wp-semantics for pGCL’s choice constructs

= p ·0 + (1−p)·0
= 0 ,

to reach the conclusion that the probability of the two coins’ being equal finally. . .
is zero. And that highlights the way demonic choice is usually treated: it’s a
worst-case outcome. The “demon” –thought of as an agent– always tries to
make the outcome as bad as possible: here because our desired outcome is that
the coins be equal, the demon always sets the coin c2 so they will differ. If
we repeated the above calculation with postcondition c16=c2 instead, the result
would again be zero: if we change our minds, want the coins to differ, then the
demon will change his mind too, and act to make them the same. 11

Implicit in the above treatment is that the c2 demon knows the outcome of
the c1 flip — which is reasonable because that flip has already happened by the
time it’s the demon’s turn.

Now we reverse the statements, so that the demon goes first: it must set c2

without knowing beforehand what c1 will be. The program becomes

c2:= H u c2:= T

c1:= H p⊕ c1:= T ,

and we calculate

wp(c2:= H u c2:= T; c1:= H p⊕ c1:= T, [c1 = c2])
= wp(c2:= H u c2:= T, wp(c1:= H p⊕ c1:= T, [c1 = c2]))
= wp(c2:= H u c2:= T, p ·[H = c2] + (1−p)·[T = c2])
= p ·[H = H] + (1−p)·[T = H] min p ·[H = T] + (1−p)·[T = T]
= p ·1 + (1−p)·0 min p ·0 + (1−p)·1
= p min (1−p) .

11 This is not a novelty: demonic choice is usually treated that way in semantics —
that’s why it’s called “demonic”.

Correctness by construction for probabilistic programs 9

name syntax semantics

do nothing SKIP wp(SKIP, post) = post .
fail ABORT wp(ABORT, post) = 0 .

probabilistic
assignment

x :∈ E1 p⊕ E2 As for (x := E1) p⊕ (x := E2) .

demonic
assignment

x :∈ E1 u E2 As for (x := E1) u (x := E2) .

probabilistic IF p THEN Prog1 As for Prog1 p⊕ Prog2 .
conditional ELSE Prog2

probabilistic WHILE p DO Prog As for ordinary loop,
loop but using probabilistic conditional.

The cases above introduce special commands, abbreviations and “syntactic sugar” for
pGCL.

Command SKIP allows an “ELSE-less” conditional, as used e.g. in Fig. 2, to be defined
in the usual way, as IF C THEN Prog1 ELSE SKIP.

Command ABORT allows wp(WHILE C DO Prog , post), as a least fixed point, to be
defined as the supremum of

wp(ABORT, post)
wp(IF C THEN (Prog ;ABORT), post)
wp(IF C THEN (Prog ;(IF C THEN (Prog ;ABORT))), post)
... ,

which exists (in spite of the reals’ being unbounded) because it can be shown by
structural induction that

wp(Prog , post) ≤ post ,

and that wp(Prog ,−) is continuous, for all programs Prog . The above is therefore a
chain, is dominated by post itself, and attains the limit at ω.

Fig. 4. Syntax and wp-semantics for pGCL’s choice constructs

10 Annabelle McIver and Carroll Morgan

Since the demon set flip c2 without knowing what the c1-flip would be (because
it had not happened yet), the worst it can do is to choose c2 to be the value
that it is known c1 is least likely to be — which is just the result above, the
lesser of p and 1−p. If –as before– we change our minds and decide instead that
we would like the coins to be different, then the demon adapts by choosing c2

to be the value that c1 is most likely to be.
Either way, the probability our postcondition will be achieved, the pre-

expectation of its characteristic function, is the same p min (1−p) — so that
only when p= 1/2, i.e. when p= (1−p), does the demon gain no advantage.

3 Probabilistic correctness by construction in action 12

Our first example problem conceptually will be to achieve a binary choice of
arbitrary bias using only a fair coin. With the apparatus of Sec. 2.3 however, we
can immediately move from conception to precision:

We must write a pGCL program that implements Left p⊕ Right ,
under the constraint that the only probabilistic choice operator we are
allowed to use in the final (pGCL) program is (1/2⊕).

This is not a hard problem mathematically: the probabilistic calculation that
solves it is elementary. Our point here is to use this simple problem to show how
such solutions can be calculated within a programming-language context, while
maintaining rigour (possibly machine-checkable) at every step.

The final program is given at (8) in Sec. 3.5.

3.1 Step 1 — a simplification

We’ll start by simplifying the problem slightly, instantiating the programs Left
and Right to x:= 1 and x:= 0 respectively. Our goal is thus to implement

x:∈ 1 p⊕ 0 , (2)

for arbitrary p, and our first step is to create two other distributions 1 q⊕ 0 and
1 r⊕ 0 whose average is 1 p⊕ 0 — that is

1/2× ((1 q⊕ 0) + (1 r⊕ 0)) = (1 p⊕ 0) . (3)

A fair coin will then decide whether to carry on with 1 q⊕ 0 or with 1 r⊕ 0.
Trivially (3) holds just when (q+r)/2 = p, and if we represent p, q, r as

variables in our program, we can achieve (3) by the double assignment

IF p≤ 1/2 → q,r:= 0,2p

p≥ 1/2 → q,r:= 2p-1,1
13 FI

{ p = (q + r)/2 } ,

(4)

12 This intent of this section can be understood based on the syntax given in Figs. 2–4.

Correctness by construction for probabilistic programs 11

whose postcondition indicates what the assignment has established. If we follow
that with a fair-coin flip between continuing with q or with r, viz.

IF p≤ 1/2 → q,r:= 0,2p – Here q is 0.

p≥ 1/2 → q,r:= 2p-1,1 – Here r is 1.

FI

(x:∈ 1 q⊕ 0) 1/2⊕ (x:∈ 1 r⊕ 0) – The fair coin (1/2⊕) here is permitted.

(5)

then we should have implemented Program (2). But what have we gained?

The gain is that, whichever branch of the conditional is taken, there is a 1/2
probability that the problem we have yet to solve will be either (0⊕) or (1⊕),
both of which are trivial. If we were unlucky, well. . . then we just try again. But
how do we show rigorously that Program (2) and Program (5) are equal?

If we look back at Program (4), we find the assertion { p = (q + r)/2 } which
is easy to establish by conventional Hoare-logic or Dijkstra-wp reasoning from
the conditional just before it. (We removed it from Program (5) just to reduce
clutter.) Rigour is achieved by calculating

wp((x:∈ 1 q⊕ 0) 1/2⊕ (x:∈ 1 r⊕ 0), post)

= 1/2 wp((x:∈ 1 q⊕ 0), post) + 1/2 wp((x:∈ 1 r⊕ 0), post)
= q/2 · post [x\1] + (1−q)/2 · post [x\0] + r/2 · post [x\1] + (1−r)/2 · post [x\0]
= (q+r)/2 · post [x\1] + (1− (q+r)/2) · post [x\0]
= p · post [x\1] + (1−p) · post [x\0] “{ p = (q + r)/2 }”

= wp(x:∈ 1 p⊕ 0, post) ,

for arbitrary postcondition post where at the end we used { p = (q + r)/2 }.
Thus (2) = (5) because for any post their pre-expectations agree.

3.2 Step 2 — intuition suggests a loop

We now return to the remark “. . . then we just try again.” If we replace the final
fair-coin flip (x:∈ 1 q⊕ 0) 1/2⊕ (x:∈ 1 r⊕ 0) by p:∈ q 1/2⊕ r then –intuitively–
we are in a position to “try again” with x:∈ 1 p⊕ 0 . Although it is the same
as the statement we started with, we have made progress because variable p has
been updated — and with probability 1/2 it is either 0 or 1 and we are done. If
it is not, then we arrange for a second execution of

IF p≤ 1/2 → q,r:= 0,2p

p≥ 1/2 → q,r:= 2p-1,1

FI

p:∈ q 1/2⊕ r

(6)

and, if still p is neither 0 nor 1, then . . . we need a loop.

13 We will sometimes include Dijkstra’s closing FI.

12 Annabelle McIver and Carroll Morgan

3.3 Step 3 — introduce a loop

We have already shown that

Program (2) = Program (6); Program (2) .

A general equality for sequential programs (including probabilistic) tells us that
in that case also we have

Program (2) = WHILE C DO Program (6) OD; Program (2) 14

for any loop condition C , provided the loop terminates. Intuitively that is clear
because, if Program (2) can annihilate Program (6) once from the right, then it
can do so any number of times. A rigorous argument appeals to the fixed-point
definition of WHILE, which is where termination is used. (If C were False, so
that the loop did not terminate, the rhs would be Abort, thus providing a clear
counter-example.)

For probabilistic loops, the usual “certain” termination is replaced with
almost-sure termination, abbreviated AST, which means that the loop termi-
nates with probability one: put the other way, that would be that the probability
of iterating forever is zero. For example the program

c:= H; WHILE c=H DO c:∈ H 1/2⊕ T OD .

terminates almost surely because the probability of flipping T forever is zero.
A reasonably good AST rule for probabilistic loops is that the variant is (as

usual) a natural number, but must be bounded above; and instead of having to
decrease on every iteration, it is sufficient to have a non-zero probability of doing
so [13,10]. 15 The variant for our example loop just above is [c=H], which has
probability 1/2 of decreasing from [H=H], that is 1, to [T=H] on each iteration.

The loop condition C for our program will be 0< p< 1 and the variant comes
directly from there: it is [0<p<1], which has probability of 1/2 of decreasing from
1 to 0 on each iteration: and when it is 0, that is 0< p< 1 is false, the loop must
exit. With that, we have established that our original Program (2) equals the
looping program

WHILE 0 < p < 1 DO

IF p≤ 1/2 → q,r:= 0,2p

p≥ 1/2 → q,r:= 2p-1,1

FI

p:∈ q 1/2⊕ r

OD

{ p = 1 ∨ p = 0 }
x:∈ 1 p⊕ 0 ,

where the assertion at the loop’s end is the negation of the loop guard.

14 As before, we usually use Dijkstra’s loop-closing OD .
15 By “reasonably good” we mean that it deals with most loops, but not all: it is

sound, but not complete. There are more complex rules for dealing with more com-
plex situations [11]. Strictly speaking, over infinite state spaces “non-zero” must be
strengthened to “bounded away from zero” [13].

Correctness by construction for probabilistic programs 13

3.4 Step 4 — use the loop’s postcondition

There is still the final x:∈ 1 p⊕ 0 to be dealt with, at the end; but the assertion
{ p = 1 ∨ p = 0 } just before it means that it executes only when p is zero or
one. So it can be replaced by IF p=0 THEN x:∈ 11⊕0 ELSE x:∈ 10⊕0 , i.e. with
just x:= p . Mathematically, that would be checked by showing for all post-
expectations post that

p = 1 ∨ p = 0 ⇒ wp(x:∈ 1 p⊕ 0, post) = wp(x:= p, post) .

But it’s a simple-enough step just to believe (unless you were using mechanical
assistance, in which case it would be checked).

And so now the program is complete: we have implemented x:∈ 1p⊕0 by a
step-by-step correctness-by-construction process that delivers the program

WHILE 0 < p < 1 DO

IF p≤ 1/2 → q,r:= 0,2p

p≥ 1/2 → q,r:= 2p-1,1

FI

p:∈ q 1/2⊕ r

OD

x:= p

(7)

in which only fair choices appear. And each step is provably correct.

3.5 Step 5 — after-the-fact optimisation

There is still one more thing that can (provably) be done with this program, and
it’s typical of this process: only when the pieces are finally brought together do
you notice a further opportunity. It makes little difference — but it is irresistible.

Before carrying it out, however, we should be reminded of the way in which
these five steps are isolated from each other, how all the layers are indepen-
dent. This is an essential part of CbC, that the reasoning can be carried out in
small, localised areas, and that it does not matter –for correctness– where the
reasoning’s target came from; nor does it matter where it is going.

Thus even if we had absolutely no idea what Program (7) was supposed to
be doing, still we would be able to see that if we are replacing x by p at the end,
we could just as easily replace it at the beginning; and then we can remove the
variable p altogether. That gives

– Now p is again a parameter, as it was in the original specification.

x:= p
WHILE 0 < x < 1 DO

IF x≤ 1/2 → q,r:= 0,2x – When x= 1/2, these two

x≥ 1/2 → q,r:= 2x-1,1 – branches have the same effect.

FI

x:∈ q 1/2⊕ r

OD ,
– The above implements x:∈ 1p⊕0 for any 0≤ p≤ 1.

(8)

14 Annabelle McIver and Carroll Morgan

and we are done. When p is 0 or 1, it takes no flips at all; when p is 1/2, it takes
exactly one flip; and for all other values the expected number of flips is 2.

We notice that Program (8) appears to contain demonic choice, in that when
x= 1/2 the conditional could take either branch. The nondeterminism is real —
even though the effect is the same in either case, that q,r:= 0,1 occurs. But
genuinely different computations are carried out to get there: in the first branch
2(1/2) − 1 is evaluated to 0; and in the second branch 2(1/2) is evaluated to 1.

This is not an accident: we recall from Sec. 2.1 that for Dijkstra such nonde-
terminism arises naturally as part of the program-construction process. Where
did it come from in this case?

The specification from which this conditional IF · · · FI arose was set out
much earlier, at (3) which given p has many possible solutions in q, r. One
of them for example is q = r= p which however would have later given a loop
whose non-termination would prevent Step 3 at Sec. 3.3. With an eye on loop
termination, therefore, we took a design decision that at least one of q, r should
be “extreme”, that is 0 or 1. To end up with q = 0, what is the largest that
p could be without sending r out of range, that is strictly more than 1? It’s
p= 1/2, and so the first IF-condition is p≤ 1/2. The other condition p≥ 1/2 arises
similarly, and it absolutely does not matter that they overlap: the program will
be correct whichever IF-branch taken in that case.

And, in the end –in (8) just above– we see that indeed that is so.

4 Implementing any discrete choice with a fair coin

Suppose instead of trying to implement a biased coin (as we have been doing
so far), we want to implement a general (discrete) probabilistic choice of x’s
value from its type, say a finite set X , but still using only a fair coin in the
implementation. An example would be choosing x uniformly from {x0, x1, x2},
i.e. a three-way fair choice. But what we develop below will work for any discrete
distribution on a finite set X of values: it does not have to be uniform.

The combination of probability and abstraction allows a development like
the one in Sec. 3 just above to be replayed, but a greater level of generality. We
begin with a variable d of type DX , 16 where we recall that X is the type of x;
and our specification is x:∈ d , that is “Set x according to distribution d.”

4.1 Replaying earlier steps from Sec. 3

Our first step –Step 1– is to declare two more DX -typed variables d0 and d1,
and –as in Sec. 3.1– specify that they must be chosen so that their average
is the original distribution d; for that we use the pGCL nondeterministic-choice

16 Recall from Sec. 2.2 that DX is the set of discrete distributions over finite set X .
17 Summing over all possible values e of x would give the same result, since the extra

values have probability zero anyway. Some find this formulation more intuitive.

Correctness by construction for probabilistic programs 15

name syntax semantics

choose from set x :∈ set

wp(x :∈ set , post) = (min e | e∈ set . post [x \e])

assign “such that” x :| property (x)
wp(x :| property (x), post) = (min e | property (e) . post [x \e])

The above generalise to more than a single variable, and are consistent with the earlier
definitions: thus

x:= a u x:= b

= x:∈ {a,b}
= x:| x∈{a,b} .

By analogy with “choose from set” (but not itself an abstraction) we have also

name syntax semantics

choose from distribution x :∈ dist

wp(x :∈ dist , post) = (
∑

e | e∈ddist e . dist (e) · post [x \e]) ,

where dist (e) is the probability that dist assigns to e and ddist e is the support of
dist , the set of elements to which it assigns non-zero probability. 17

It is just the expected value of post , considered as a function of x , over the distribution
dist on x . (Since E1 p⊕ E2 is a distribution, the definition above agrees with the earlier
meaning of x:∈ E1 p⊕ E2 that we gave in Fig. 4 as an abbreviation.)

Fig. 5. Abstraction in pGCL

16 Annabelle McIver and Carroll Morgan

construct “assign such that” (with syntax borrowed from Dafny [9]), from Fig. 5,
to write

d0,d1:| d = (d0+d1)/2 – Choose d0,d1 so that their average is d. (9)

The analogy with our earlier development is that there the distribution d was
specifically 1 p⊕ 0, and we assigned

if p≤1/2 d0, d1 = (1 0⊕ 0), (1 2p⊕ 0)
if p≥1/2 d0, d1 = (1 2p−1⊕ 0), (1 1⊕ 0) ,

which is a refinement (v) of (9).
Our second step is to re-establish the x:∈ d -annihilating property that

Program (9); d:∈ d0 1/2⊕ d1; x:∈ d = x:∈ d , (10)

which is proved using wp-calculations agains a general post-expectation post ,
just as before: instead of the assertion { p = (q + r)/2 } used at the end of Step
1, we use the assertion { d = (d0+d1)/2 } established by the assign-such-that.

The third step is again to introduce a loop. But we recall from Step 3 earlier
that the loop must be almost-surely terminating and, to show that, we need
a variant function. Here we have no q,r that might be set to 0 or 1; we have
instead d0,d1. Our variant will be that the “size” of one of these distributions
must decrease strictly, where we define the size of a discrete distribution to
be the number of elements to which it assigns non-zero probability. 18 But our
specification d0,d1:| d = (d0+d1)/2 above does not require that decrease; and
so we must backtrack in our CbC and make sure that it does.

And we have made an important point: developments following CbC rarely
proceed as they are finally presented: the dead-ends are cut off, and only the
successful path is left for the audit trail. It highlights the multiple uses of CbC
— that on the one hand, used for teaching, the dead-ends are shown in order
to learn how to avoid them; used in production, the successful path remains so
that it can be modified in the case that requirements change. 19

Thus to establish AST of the loop –that it terminates with probability one–
we strengthen the split of d achieved by d0,d1:| (d0+d1)/2 = d with the
decreasing-variant requirement, that either |d0|< |d| or |d1|< |d|, where we are
writing |−| for “size of”. Then the variant |d| is guaranteed strictly to decrease
with probabililty 1/2 on each iteration. That is we now write

d0,d1:| (d0+d1)/2 = d ∧ (|d0|< |d| ∨ |d1|< |d|) , (11)

replacing (9), for the nondeterministic choice of d0 and d1. We do not have to re-
prove its annihilation property, because the new statement (11) is a refinement
of the (9) from before (It has a stronger postcondition.) and so preserves all its
functional properties. In fact that is the definition of refinement.

18 In probability theory this would be the cardinality of its support.
19 And if an error was made in the CbC proofs, the “successful” path can be audited

to see what the mistake was, why it was made, and how to fix it.

Correctness by construction for probabilistic programs 17

Our next step is to reduce the nondeterminism in (11) somewhat, choosing
a particular way of achieving it: to “split” d into two parts d0,d1 such that the
size of at least one part is smaller, we choose two subsets X0, X1 of X whose
intersection contains at most one element. That is illustrated in Fig. 6, where
X0 = {A,B,C} and X1 = {C,D}. Further, we require that the probabilities
d(X0) and d(X1) assigned by d to X0−X1 and X1−X0 are both no more than
1/2. 20 Those constraints mean that we can always arrange the subsets so that
the “1/2-line” of Fig. 6 either goes strictly through X0 ∩X1 (if they overlap) or
runs between them (if they do not).

A C DB

0 1
1/2

A C0B
DC1

A CB

DC

d

d0

d1
X 2

X 2

Suppose that X is {A,B,C,D}, and that the distribution d in X that we start with
is indicated by the size of the rectangles: the size |d| of d here is therefore 4, because
it contains 4 rectangles. We choose X0 to be {A,B,C} and X1 to be {C,D}, so that
X0−X1 is {A,B} and X1−X0 is {D}, and both d(X0−X1) and d(X1−X0) are no more
than 1/2. Their overlap is {C}, whose probability the “1/2-line” splits into two pieces:
one piece joins d0 and the other piece joins d1.

Thus by dividing the overall rectangle (representing X itself) exactly in the middle,
at least one side 21 must contain strictly fewer than |d| rectangles — and if we double
the size of each small rectangle, we get our two distributions d1 and d2 such that
d = (d0 + d1)/2 and either |d0|< |d| or |d1|< |d|.

Fig. 6. Dividing a discrete distribution into two pieces

20 Applying d to a set means the sum of the d-probabilities of the elements of the set.
21 If for example C was much smaller, so that the dividing line went through D, the

new distribution d0 would have support 4, the same as d itself. But |d1| would have
support 1, strictly smaller.

18 Annabelle McIver and Carroll Morgan

We then construct d0 by restricting d to just X0, then doubling all the
probabilities in that restriction; if they sum to more than 1, we then trim any
excess from the one element in X0 ∩X1 that X0 shares with X1. The analogous
procedure is applied to generate d1. In Fig. 6 for example we chose sizes 0.2, 0.1,
0.3 and 0.4 for the four regions, and the 1/2 line went through the third one. On
the left, the 0.2 and 0.1 and 0.3 are doubled to 0.4 and 0.2 and 0.6, summing to
1.2; thus 0.2 is trimmed from the 0.6, leaving 0.4 assigned to C. The analogous
procedure applies on the right.

4.2 “Decomposition of data into data structures”

The quote is from Wirth [15]. Our program is currently

WHILE |d|6=1 DO

d0,d1:| (d0+d1)/2 = d ∧ (|d0|< |d| ∨ |d1|< |d|)
d:∈ d0 1/2⊕ d1

OD

x:∈ d // This is aa trivial choice, because |d|=1 here.

(12)

And it is correct: it does refine x:∈ d — but it is rather abstract. Our next
development step will be to make it concrete by realising the distribution-typed
variables and the subsets of X as “ordinary” datatypes using scalars and lists.
In correctness-by-construction this is done by deciding, before that translation
process begins, what the realisations will be — and only then is the abstract
program transformed, piece by piece. The relation between the abstract- and
concrete types is called a coupling invariant.

Although an obvious approach is to order the type X , say as x1, x2, . . . , xN

and then to realise discrete distributions as lists of length N of probabilities
(summing to 1), a more concise representation is suggested by the fact that for
example we represent a two-point distribution x1 p⊕ x2 as just one number p,
with the 1−p implied. Thus we will represent the distribution p1, p2, . . . pN as
the list of length N−1 of “accumulated” probabilities: in this case for p we would
have a list

p1, p1+p2, . . . ,

N−1∑
n=1

pn ,

leaving off the N th element of the list since it would always be 1 anyway. Subsets
of X will be pairs low,high of indices, meaning {xlow, . . . , xhigh}, and although
that can’t represent all subsets of X , contiguous subsets are all we will need.
Carrying out that transformation gives following concrete version of our abstract
program Program (12) below, where the abstract d is represented as the concrete
dL[low:high] , which is the coupling invariant.22

And in Program (13) of Fig. 7 we have, finally, a concrete program that can
actually be run. Notice that it has exactly the same structure as Program (12):

22 The range low:high is inclusive-exclusive (as in Python). A similar coupling invari-
ant applies to d0 and d1. All three invariants are applied at once.

Correctness by construction for probabilistic programs 19

– Discrete distribution d in X of size N is realised here as dL (for “d-list”).
low,high:= 1,N – Initial support is all of X .

WHILE low 6= high DO – low= high means support is {xlow}
– Current support is {xlow, . . . , xhigh}.

– Find X0 by examining the probabilities of x1, x2, . . .
n:= low – Determine dL0 as in lhs of Fig. 6.
WHILE n<high∧ dL[n]<1/2 DO dL0[n]:= 2*dL[n]; n:= n+1 OD

low0,high0:= low,n – Subset X0 is {xlow0, . . . , xhigh0} .

– Find X1 by examining the probabilities of xN , xN−1, . . .
n:= high-1 – Determine dL1 as in rhs of Fig. 6.
WHILE low≤n∧ 1/2<dL[n] DO dL1[n]:= 2*dL[n]-1; n:= n-1 OD

low1,high1:= n+1,high – Subset X1 is {xlow1, . . . , xhigh1} .

– Use fair coin to choose between dL0 and dL1.
(dL,low,high):∈ (dL0,low0,high0) 1/2⊕ (dL1,low1,high1)

OD

x:= xlow – Extract sole element of point distribution’s support.

(13)

Fig. 7. Implement any discrete choice using only a fair coin.

split (the realisations of) d into d0 and d1; overwrite d with one of them; exit
the loop when |d| is one.

Neverthess, as earlier in Sec. 3.5, further development steps might still be
possible now that everything is together in one place: 23 and indeed, recognising
that only one of dL0,dL1 will be used, we can rearrange Program (13)’s body so
that only that only one of them will be calculated — and it can be updated as
we go. That gives our really-final-this-time program (14) in Fig. 8, which will
-without further intervention– use a fair coin to choose a value xn according to
any given discrete distribution d on finite X . Its expected number of coin flips
is no worse than 2N−2, where N is the size of X , thus agreeing with expected 2
flips for the program (8) in Sec. 3.5 that dealt with the simpler case d = (1 p⊕0)
where X was {1, 0}.

It’s again worth emphasising –because it is the main point– that the cor-
rectness arguments for all of these steps are isolated from each other: in CbC
every step’s correctness is determined by looking at that step alone. Thus for
example nothing in the translation process just above involved reasoning about
the earlier steps, whether Program (12) actually implemented the x:∈ d that
we started with: we didn’t care, and we didn’t check. We just translated Pro-
gram (12) into Program (13) regardless. And the subsequent rearrangement of
(13) into Program (14) similarly made no use of Program (13)’s provenence.

23 Note the necessity of keeping this as two steps: first data-refine, then (if you can)
optimise algorithmically.

20 Annabelle McIver and Carroll Morgan

– Assume discrete distribution d over X = {x1, . . . , xN} of size N
– has been represented cumulatively in list dL, as described above.

low,high:= 1,N – Initial support is all of X .
WHILE low 6= high DO – low= high means support is {xlow}

– Fair coin flipped here. (Recall Fig. 4.)
IF 1/2 THEN – Then update dL as in lhs of Fig. 6.

n:= low

WHILE n<high∧ dL[n]<1/2 DO dL[n]:= 2*dL[n]; n:= n+1 OD

high:= n

ELSE – Else update dL as in rhs of Fig. 6.
n:= high-1

WHILE low≤n∧ 1/2<dL[n] DO dL[n]:= 2*dL[n]-1; n:= n-1 OD

low:= n+1

FI

OD

x:= xlow – Extract sole element of point distribution dL’s support.

(14)

Fig. 8. Optimisation of Program (13)

All that is to be contrasted with the more common approach in which only
intuition (and experience, and skill) is used, in which our final Program (14)
might be written all at once at this concrete level, only then checking (testing,
debugging, hoping) afterwards that our intuitions were correct. A transliteration
of Program (14) into Python is given in App. A.

5 An everyday application:
simulating a fair die using only a fair coin

Program (14) of the previous section works for any discrete distribution, without
having to adapt the program in any way. However if the distribution’s proba-
bilities are not too bizarre, then the number of different values for low and d

and high might be quite small — and then the program’s behaviour for that
distribution in particular can be set out as a small probabilistic state machine.

In Fig. 6 we take d to be the uniform distribution over the possible die-roll
outcomes {1, 2, 3, 4, 5, 6}, and show the state machine that results. For that state
machine in particular, we propose one last correctness-preserving step: it takes
us to the optimal die-roll algorithm of Knuth and Yao [6].

6 Why was this “correctness by construction”?

The programs here are not themselves remarkable in any way. (The optimality
of the Knuth/Yao algorithm is not our contribution). Even the mathematical

Correctness by construction for probabilistic programs 21

1 6

1 2 3 4 5

1 3

2 4

2 3

2

1 2

1 2

4
1 2

2
2 3

4

3

4 6

2 4

5 6

2

4 5

4 5

4
4 5

2
5 6

4

6

↵↵

��

�

Each interior node has two possible successors chosen with equal probability, and each
final-die node is reached with the same probability 1/6. There are 17 nodes, and the
expected number of coin flips is 4.
The nodes’ origins are shown by labelling them with low, d and high from the states
in the generating program that gave rise to them, representing the current probability
distribution d yet to be realised over over the remaining subset {low, . . . , high} of
possible results. With probabilities normalised out of 6 for neatness, a typical label is

low high

←− 6×d −→ ,

where we recall that d gives the sum of the probabilities for xlow, xlow+1, . . . , xhigh−1
and that d for xhigh is left out, because it is always 1. Thus for example low = 2 and
high = 3 and d = [4] represents the distribution over support {2, 3} of 4/6 for 2 and
1−4/6 for 3, that is 2 2/3⊕ 3.

The well-known (optimal) algorithm of Knuth and Yao for simulating a die with a fair
coin has 13 states and 11/3 expected coin flips [6] — and it can be obtained from here
by one last correctness-preserving step. Eliminate the choice γ, so that the two α and
the two β nodes are merged; since that also merges the two die-rolls 1 and 3, restore
the γ choice as a new fair choice γ′ over {1, 3}, just below the merged β’s. (The nodes
leading to die-roll 2 are merged as well, but it makes no difference.)
Concentrating on the left (justified by symmetry), we see that the original γ choice
must be done every time; but its replacement γ′ is done only 2/3 of the time. That
realises exactly the 1/3 efficiency advantage that Knuth/Yao optimal algorithm has
over the one synthesised here by our general Program (14).

Fig. 9. Simulating a fair die with a fair coin

22 Annabelle McIver and Carroll Morgan

insights used in their construction are well known, examples of elementary prob-
ability theory. CbC means however applying those insights in a systematic, lay-
ered way so that the reasoning in each layer does not depend on earlier layers,
and does not affect later ones. The steps were specifically

1. Start with the specification x:∈ d at the beginning of Sec. 4.
2. Prove a one-step annihilation property (10) for that specification.
3. Use a general loop rule to prove loop-annihilation Program (12), after Strength-

ening Program (9) to Program (11) to establish AST.
4. Propose strategy Fig. 6 for the loop body of Program (12).
5. Propose data representation of finite discrete distributions as lists, in Sec. 4.2,

realising the strategy of Fig. 6 in the code of Program (13).
6. Rearrange Program (13) to produce a more efficient final program Program (14).

7. Note that correctness-by-construction guarantees that Program (14)
refines x:∈ d for any d.

8. Apply Program (14) to the fair die, to produce state chart of Fig. 9.
9. Modify Fig. 9 to produce the Knuth/Yao (optimal) algorithm [6].

10. Note that correctness-by-construction guarantees that the Knuth/Yao
(optimal) algorithm implements a fair die.

CbC also means that since all those steps are done explicitly and separately,
they can be checked easily as you go along, and audited afterwards. But to apply
CbC effectively, and honestly, one must have a rigorous semantics that justifies
every single development step made. In our example here, that was supplied here
by the semantics of pGCL [10]. But working in any “wide spectrum” language,
right from the (abstract) start all the way to the (concrete) finish, means that
many of those rigorous steps can be checked by theorem provers.

Correctness by construction for probabilistic programs 23

References

1. Edsger W Dijkstra. On the reliability of programs (EWD303).
2. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
3. R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Mathe-

matical Aspects of Computer Science, number 19 in Proc Symp Appl Math., pages
19–32. American Mathematical Society, 1967.

4. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

5. C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Pro-
ceedings of the IEEE 4th Annual Symposium on Logic in Computer Science, pages
186–95, Los Alamitos, Calif., 1989. Computer Society Press.

6. D. Knuth and A. Yao. Algorithms and Complexity: New Directions and Recent Re-
sults, chapter The complexity of nonuniform random number generation. Academic
Press, 1976.

7. D. Kozen. Semantics of probabilistic programs. Jnl Comp Sys Sci, 22:328–50,
1981.

8. D. Kozen. A probabilistic PDL. In Proceedings of the 15th ACM Symposium on
Theory of Computing, pages 291–7, New York, 1983. ACM.

9. K.R.M. Leino. Dafny: An automatic program verifier for functional correctness. In
Voronkov A. Clarke E.M., editor, Logic for Programming, Artificial Intelligence,
and Reasoning. LPAR 2010., volume 6355 of Lecture Notes in Computer Science.
Springer, 2010.

10. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer, 2005.

11. Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter
Katoen. A new proof rule for almost-sure termination. Proc. ACM Program. Lang.,
2(POPL), December 2017.

12. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-
formers. ACM Trans. Program. Lang. Syst., 18(3):325–353, May 1996.

13. C.C. Morgan. Proof rules for probabilistic loops. In He Jifeng,
John Cooke, and Peter Wallis, editors, Proc BCS-FACS 7th Re-
finement Workshop, Workshops in Computing. Springer, July 1996.
http://www.bcs.org/upload/pdf/ewic rw96 paper10.pdf.

14. Andrew Vazsonyi. Which Door has the Cadillac? Adventures of a Real-Life Math-
ematician. Writers Club Press, 2002.

15. N. Wirth. Program development by stepwise refinement. Comm ACM, 14(4):221–
7, 1971.

24 Annabelle McIver and Carroll Morgan

A Program (14) implemented in Python

Run 1,000,000 trials on a fair-die simulation.

#

bash-3.2$ python ISoLA.py

1000000

1 1 1 1 1 1

Relative frequencies

0.998154 1.00092 0.996474 0.998664 1.004928 1.00086

realised, using 4.001938 flips on average.

import sys

from random import randrange

Number of runs, an integer on the first line by itself.

runs = int(sys.stdin.readline())

Discrete distribution unnormalised, as many subsequent integers as needed.

Then EOT.

d= []

for line in sys.stdin.readlines():

for word in line.split(): d.append(int(word))

sizeX= len(d) # Size of initial distribution’s support.

Construct distribution’s representation as accumulated list dL_Init.

Note that length of dL_Init is sizeX-1,

because final (normalised) entry of 1 is implied.

Do not normalise, however: makes the arithmetic clearer.

sum,dL_Init= d[0],[]

for n in range(sizeX-1): dL_Init= dL_Init+[sum]; sum= sum+d[n+1]

tallies= []

for n in range(sizeX): tallies= tallies+[0]

allFlips= 0 # For counting average number of flips.

for r in range(runs): flips= 0

Program (14) proper starts on the next page.

Correctness by construction for probabilistic programs 25

Program (14) starts here.

low,high,dL= 0,sizeX-1,dL_Init[:] # Must clone dL_Init.

print "Start:", low, dL[low:high], high

while low<high:

flip= randrange(2) # One fair-coin flip.

flips= flips+1

if flip==0:

n= low

while n<high and 2*dL[n]<sum: dL[n]= 2*dL[n]; n= n+1

high= n # Implied dL0[high]=1 performs trimming automatically.

print "Took dL0:", low, dL[low:high], high # dL0 has overwritten dL.

else: # flip==1

n= high-1

while low<=n and 2*dL[n]>sum: dL[n]= 2*dL[n]-sum; n= n-1

low= n+1 # Implied dL1[low]=0 performs trimming automatically.

print "Took dL1", low, dL[low:high], high # dL1 has overwritten dL.

print "Rolled", low, "in", flips, "flips."

Program (14) ends here.

tallies[low]= tallies[low]+1

allFlips= allFlips+flips

print "Relative frequencies"

for n in range(sizeX): print " ", float(tallies[n])/runs * sum

print "realised, using", float(allFlips)/runs, "flips on average."

	Correctness by construction for probabilistic programs

