Skip to main content

Probabilistic Mission Planning and Analysis for Multi-agent Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles (ISoLA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12476))

Included in the following conference series:

Abstract

Mission planning is one of the crucial problems in the design of autonomous Multi-Agent Systems (MAS), requiring the agents to calculate collision-free paths and efficiently schedule their tasks. The complexity of this problem greatly increases when the number of agents grows, as well as timing requirements and stochastic behavior of agents are considered. In this paper, we propose a novel method that integrates statistical model checking and reinforcement learning for mission planning within such context. Additionally, in order to synthesise mission plans that are statistically optimal, we employ hybrid automata to model the continuous movement of agents and moving obstacles, and estimate the possible delay of the agents’ travelling time when facing unpredictable obstacles. We show the result of synthesising mission plans, analyze bottlenecks of the mission plans, and re-plan when pedestrians suddenly appear, by modelling and verifying a real industrial use case in UPPAAL SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdeddaı, Y., Asarin, E., Maler, O., et al.: Scheduling with timed automata. Theor. Comput. Sci. 354(2), 272–300 (2006)

    Article  MathSciNet  Google Scholar 

  2. Al-Nuaimi, M., Qu, H., Veres, S.M.: A stochastically verifiable decision making framework for autonomous ground vehicles. In: 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), pp. 26–33. IEEE (2018)

    Google Scholar 

  3. Ayala, A.M., Andersson, S.B., Belta, C.: Temporal logic control in dynamic environments with probabilistic satisfaction guarantees. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3108–3113. IEEE (2011)

    Google Scholar 

  4. Chandler, P., Pachter, M.: Research issues in autonomous control of tactical UAVs. In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No. 98CH36207). IEEE (1998)

    Google Scholar 

  5. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    Article  MathSciNet  Google Scholar 

  6. David, A., et al.: Statistical model checking for stochastic hybrid systems. arXiv preprint arXiv:1208.3856 (2012)

  7. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

    Chapter  Google Scholar 

  8. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0013570

    Chapter  Google Scholar 

  9. Gu, R., Enoiu, E.P., Seceleanu, C.: TAMAA: UPPAAL-based mission planning for autonomous agents. In: 35th ACM/SIGAPP Symposium on Applied Computing SAC2020. ACM (2019)

    Google Scholar 

  10. Gu, R., Enoiu, E., Seceleanu, C., Lundqvist, K.: Verifiable and scalable mission-plan synthesis for autonomous agents. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 73–92. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_2

    Chapter  Google Scholar 

  11. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Towards a two-layer framework for verifying autonomous vehicles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 186–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_12

    Chapter  Google Scholar 

  12. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems NATO ASI Series (Series F: Computer and Systems Sciences), vol. 170, pp. 265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5_13

    Chapter  Google Scholar 

  13. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application. MIT press, Cambridge (2015)

    Book  Google Scholar 

  14. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997)

    Article  Google Scholar 

  15. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical report, Computer Science Department, Iowa State University, October 1998

    Google Scholar 

  16. Nikou, A., Tumova, J., Dimarogonas, D.V.: Probabilistic plan synthesis for coupled multi-agent systems. IFAC-PapersOnLine 50(1), 10766–10771 (2017)

    Article  Google Scholar 

  17. Sadraddini, S., Belta, C.: Formal synthesis of control strategies for positive monotone systems. IEEE Trans. Autom. Control 64(2), 480–495 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Sekizawa, T., Otsuki, F., Ito, K., Okano, K.: Behavior verification of autonomous robot vehicle in consideration of errors and disturbances. In: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 3, pp. 550–555. IEEE (2015)

    Google Scholar 

  19. Trinh, L.A., Ekström, M., Cürüklü, B.: Toward shared working space of human and robotic agents through dipole flow field for dependable path planning. Front. Neurorobot. 12, 28 (2018)

    Article  Google Scholar 

  20. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs with safe-reachability objectives. In: International Conference on Autonomous Agents and Multi Agent Systems. IFAAMS, ACM (2018)

    Google Scholar 

  21. Watkins, C.J.C.H.: Learning from delayed rewards, King’s College, Cambridge (1989)

    Google Scholar 

Download references

Acknowledgement

The research leading to the presented results has been undertaken within the research profile DPAC - Dependable Platform for Autonomous Systems and Control project, funded by the Swedish Knowledge Foundation, grant number: 20150022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Gu or Cristina Seceleanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, R., Enoiu, E., Seceleanu, C., Lundqvist, K. (2020). Probabilistic Mission Planning and Analysis for Multi-agent Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles. ISoLA 2020. Lecture Notes in Computer Science(), vol 12476. Springer, Cham. https://doi.org/10.1007/978-3-030-61362-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61362-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61361-7

  • Online ISBN: 978-3-030-61362-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics