
Safe Sessions of Channel Actions
in Clojure: A Tour of the Discourje Project

Ruben Hamers1 and Sung-Shik Jongmans1,2(B)

1 Open University, Heerlen, The Netherlands
ssj@ou.nl

2 CWI, Amsterdam, The Netherlands

Abstract. To simplify shared-memory concurrent programming, in
addition to low-level synchronisation primitives, several modern pro-
gramming languages have started to offer core support for higher-
level communication primitives as well, in the guise of message pass-
ing through channels. Yet, a growing body of evidence suggests that
channel-based programming abstractions for shared memory also have
their issues.

The Discourje project aims to help programmers cope with message-
passing concurrency bugs in Clojure programs, based on run-time ver-
ification and dynamic monitoring. The idea is that programmers write
not only implementations, but also specifications (of sessions of channel
actions). Discourje then offers a library to ensure that implementations
run safely relative to specifications (= “bad” channel actions never hap-
pen).

This paper gives a tour of the current state of Discourje, by example;
it is intended to serve both as a general overview for readers who are
unfamiliar with previous work on Discourje, and as an introduction to
new features for readers who are familiar.

1 Introduction

Background. To take advantage of today’s and tomorrow’s multi-core pro-
cessors, shared-memory concurrent programming—a notoriously complex enter-
prise—is becoming increasingly important. To alleviate some of the complexities,
in addition to low-level synchronisation primitives, several modern programming
languages have started to offer core support for higher-level communication prim-
itives as well, in the guise of message passing through channels (e.g., Go [21],
Rust [40], Clojure [11]). The idea is that, beyond their usage in distributed com-
puting, channels can also serve as a programming abstraction for shared memory,
supposedly less prone to concurrency bugs than locks, semaphores, and the like.
Notably, the official Go documentation recommends programmers to “not com-
municate by sharing memory; instead, share memory by communicating” [20].

Yet, a growing body of evidence suggests that channel-based programming
abstractions for shared memory also have their issues. For instance, in the 2016–
2018 editions of the annual Go survey [16–18], “[respondents] least agreed that
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 489–508, 2020.
https://doi.org/10.1007/978-3-030-61362-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61362-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-61362-4_28

490 R. Hamers and S.-S. Jongmans

they are able to effectively debug uses of Go’s concurrency features”, while in
the 2019 edition [19], “debugging concurrency” has the lowest satisfaction rate
of all eleven “very or critically important” topics (as indicated by the majority
of respondents). Moreover, after studying 171 concurrency bugs in popular open
source Go programs [45], Tu et al. find that “message passing does not necessarily
make multi-threaded programs less error-prone than shared memory.”

Recently, several research projects emerged that aim to help programmers
cope with concurrency bugs in Go programs [7,30,31,36,43], based on compile-
time verification and static analysis; the resulting tools complement Go’s static
type-checker in a natural fashion, and their compile-time usage integrates well—
at least potentially—with established Go programming practices. However, while
similar compile-time techniques may suit other statically typed languages (e.g.,
Rust) at least as well, their appropriateness seems less obvious for dynamically
typed languages (e.g., Clojure): for such languages, technical and cultural differ-
ences mean that run-time techniques may be preferable. The Discourje project
is a research vehicle to develop and study such techniques: ultimately, the aim is
to help programmers cope with concurrency bugs in Clojure programs,1 based
on run-time verification and dynamic monitoring.

The Discourje Project. Discourje,2 pronounced “discourse”, addresses the
following problem: given a specification S of the roles (threads), the infras-
tructure (channels between threads), and the sessions (communications through
channels) that an implementation I in Clojure should fulfill, how to check—at
run-time—that an execution of I is indeed safe relative to S? Safety means that
“bad” channel actions never happen: if a channel action happens in I, then it can
happen in S. For instance, typical specifications rule out common channel-based
concurrency bugs [45], such as sends without receives, receives without sends,
and type mismatches (actual type sent �= expected type received).

Roughly, the idea is to execute specification S—as if it were a state machine—
alongside implementation I, in “perfect synchrony”; this means that, to provide
safety, a channel action in I happens if and only if a corresponding transition
happens in S. To achieve this, following standard run-time verification prac-
tices [3], two extra components are needed: a monitor (of S) and instrumen-
tation (of I). Specifically, every time that a channel action is about to happen
in I, the instrumentation quickly intervenes and first asks the monitor if S can
make a corresponding transition. If the monitor answers “yes”, both the channel
action in I and the corresponding transition in S happen; if “no”, an exception is
thrown, while the channel action is aborted (= safe). Facilitating this approach,
Discourje offers the programmer easy-to-learn libraries to write specifications,
add monitors, and add instrumentation to Clojure programs.

1 Clojure [11,23] is a dynamically typed, functional language (impure) that compiles
to Java bytecode. As a dialect of Lisp, Clojure follows the code-as-data philosophy,
offers a powerful macro system, and is written in parenthesised prefix notation.

2 https://github.com/discourje.

https://github.com/discourje

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 491

In recent editions of the annual Clojure survey [9,10], respondents indicated
that “ease of development” is one of Clojure’s most important strengths (more
important than “runtime performance”). For this reason, and to make Discourje
non-invasive to deploy and start using, we emphasise ergonomics (including
expressiveness) in the design and implementation of the libraries. Notably:

1. We leverage Clojure’s macro system to offer the specification language as a
library of macros. As a result, the programmer can write specifications and
implementations in the same syntactic style, using the same editor (no exter-
nal tools needed), towards a seamless specification–implementation experi-
ence. Monitors can subsequently be added with simple function calls.

2. Control-flow operators in the specification language have the same names as
those in Clojure, for a gentle learning curve.

3. Normally, in Clojure, channel-based programming abstractions can be used
by loading standard library clojure.core.async. To add instrumentation, the
only thing the programmer needs to change, is load discourje.core.async
instead, for the primitives Discourje currently supports: threadthreadthread (new thread),
chanchanchan (new channel; unbuffered or buffered),3 close!close!close! (close), >!!>!!>!! (send), <!!<!!<!!
(receive), and alts!!alts!!alts!!| (select). This means, in particular, that the programmer
does not need to write the implementation with Discourje in mind: instru-
mentation can straightforwardly be added afterwards.

When clojure.core.async was introduced in 2013 [8], already, it was sug-
gested that “certain kinds of automated correctness analysis” are possible, but
at the time, “no work ha[d] been done on that front”. To our knowledge, Discourje
is the first project that addresses this open problem.

This Paper. This paper gives a tour of the current state of Discourje, by exam-
ple. It is geared towards demonstrating two core concepts of clojure.core.async
that we did not support before [22], and which significantly improve applicabil-
ity: unbuffered channels (to perform handshake communications) and selects (to
await enabledness of one of several channel actions). This paper has two aims
and intends to address two audiences: (i) for readers who are not familiar with
previous work on Discourje [22], this paper serves as a gentle overview of the
general idea and expressiveness; (ii) for readers who are familiar with previous
work, this paper introduces our new support for unbuffered channels and selects.

The tour consists of three Clojure programs, each of which simulates a game:
it starts in Sect. 2 with Tic–Tac–Toe; it continues in Sect. 3 with Rock–Paper–
Scissors; it ends in Sect. 4 with Go Fish. In each of these examples, essentially,

3 With unbuffered channels, in the absence of a buffer, both sends and receives are
blocking until a reciprocal channel action is performed on the other end of the
channel. With buffered channels, in the presence of a bounded, n-capacity, order-
preserving buffer, sends are blocking until the buffer is not full (then, a message is
added to the back of the buffer), while receives are blocking until the buffer is not
empty (then, a message is removed from the front of the buffer).

492 R. Hamers and S.-S. Jongmans

1 (defroledefroledefrole :alice) (defroledefroledefrole :bob)
2

3 (defsessiondefsessiondefsession :ttt []
4 (altaltalt
5

6 (defsessiondefsessiondefsession
7 (catcatcat (>>> Long r1 r2)
8 (altaltalt

(:ttt-turn :alice :bob)
(:ttt-turn :bob :alice)))

:ttt-turn [r1 r2]

(:ttt-turn r2 r1)
9 (parparpar (closecloseclose r1 r2)

10 (closecloseclose r2 r1)))))

Fig. 1. Specification of Tic–Tac–Toe

the safety property that we aim to ensure is that players never violate the “inter-
action rules” of the game (e.g. proper turn-taking), as prescribed by the speci-
fications; however, we do not check full functional correctness (e.g., we check if
players properly take turns to make moves, but we do not check if every move
is actually valid in the current state of the game). In Sect. 5, we give a brief
overview of the underlying formal foundation. For reference, a summary of Clo-
jure’s core functions and macros is given in Appendix A. Full code (specifications
and implementations) can be downloaded via the project’s website (footnote 2).

2 The Tour: Tic–Tac–Toe

Overview. We start the tour with a program that simulates a game of Tic–Tac–
Toe.4 The program consists of two threads and two oppositely directed channels
through which these threads communicate. The threads take turns to make plays
on thread-local copies of the grid; at the end of its turn, the active thread sends
its play to the other thread and becomes passive, while the other thread receives
the play, becomes active, updates its copy of the grid accordingly, and makes
the next play. This example demonstrates the following features:

– Specification: roles; unbuffered communication (binary);5 close; concate-
nation; choice; parallel; session parameters (roles).

– Implementation: channels; send; receive; close; monitor; instrumentation.

Specification. A Discourje specification of Tic–Tac–Toe is shown in Fig. 1.
Core Discourje functions and macros are typeset in fontfontfont.

Line 1 defines two roles (defroledefroledefrole), identified by :alice and :bob. Lines 3–10
define two sessions (defsessiondefsessiondefsession), identified by :ttt (zero formal parameters) and
:ttt-turn (two formal parameters for roles, identified by r1 and r2).

Session :ttt-turn represents one turn of r1 (active) against r2 (passive). It
prescribes a concatenation (catcatcat):

1. First, a message of type Long is communicated from r1 to r2, unbuffered (-->-->-->).
The idea is that r1 sends its play this turn to r2.

4 Tic–Tac–Toe is a two-player game played on a 3 × 3 grid. Players take turns to fill
the initially blank spaces of the grid with crosses (“X”) and noughts (“O”). The first
player to fill three consecutive spaces, in any direction, with the same symbol wins.

5 A version of this example with buffered communication appears elsewhere [22].

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 493

2. Then, there is a choice (altaltalt):
(a) Either, there is another instance of session :ttt-turn, but now with r2

active and r1 passive. The idea is that r1 did not win or draw this turn,
so the game continues.

(b) Or, channels are closed (closecloseclose), in parallel (parparpar). The idea is that r1 did
win or draw this turn, so the game ends.
We note that the closes may happen in any order; this is crucial, as neither
one of the closes is causally related to the other. In the implementation,
additional “covert interaction” (= synchronisation/ communication out-
side the specification) would be needed to order them.

Session :ttt represents the whole game. It prescribes a choice between either
an initial instance of session :ttt-turn with actual parameters :alice and :bob,
or :bob and :alice, depending on who takes the first turn. Thus, at the specifi-
cation level, it is undecided who goes first; this is an implementation detail.

As concatenation, choice, and recursion are supported, any regular expression
(over unbuffered communications and closes) can be written. However, for conve-
nience, shorthands are available for the following patterns: 0-or-more repetitions
(***), 1-or-more (+++), and 0-or-1 (???). Thus, the programmer never needs to use
recursion to write regular expressions. The syntax and semantics of the remain-
ing five macros are the same as those in standard library clojure.spec.alpha, to
make Discourje easy to learn. For the same reason, the notation to define and
“call” sessions is similar to the notation to define and call functions.

Implementation. A Clojure implementation of Tic–Tac–Toe is shown in Fig. 2.
Core Clojure functions and macros are typeset in fontfontfont.

Line 1 loads five functions and macros from clojure.core.async. Lines
3–11 define constants (blank, cross, nought, initial-grid) and functions
(get-blank, put, not-final?) to represent Tic–Tac–Toe concepts. Lines 11–12
define unbuffered channels (a->b and b->a) that implement the infrastructure
through which the threads communicate. As these channels are unbuffered, sends
and receives block until reciprocal channel actions are performed.

Lines 16–26 and 27–37 define threads that implement roles :alice and :bob.
Both threads execute a loop, starting with a blank initial grid. In each iteration,
:alice first gets the index of a blank space on the grid, then plays a cross in that
space, then sends a message to :bob to communicate the index (a message of type
Long), then awaits a message from :bob, and then updates the grid accordingly;
:bob acts symmetrically. After every grid update, :alice or :bob checks if it has
reached a final grid; if so, the loop is exited and channels are closed.6

6 Many data structures in Clojure—including the vector that implements the grid—are
persistent and, thus, effectively immutable: every operation on an old data structure
leaves it unmodified and, instead, returns a new data structure. In concurrent pro-
grams, including Tic–Tac–Toe, persistent data structures can be used as thread-local
copies of data, but modifications need to be explicitly communicated. Persistence
also means that classical data races cannot happen: if threads communicate only
persistent data structures through channels, freedom of data races is guaranteed.

494 R. Hamers and S.-S. Jongmans

1 (require '[clojure.core.async :refer [threadthreadthread chanchanchan close!close!close! >!!>!!>!! <!!<!!<!!]])
2

3 (defdefdef blank " ") (defdefdef cross "x") (defdefdef nought "o")
4

5 (defdefdef initial-grid [blank blank blank ;; an initial 3x3 grid of blank spaces,
6 blank blank blank ;; implemented as a vector of length 9
7 blank blank blank]) ;; (persistent data structure)
8

9 (defdefdef get-blank (fnfnfn [g] ...)) ;; returns a blank space in g
10 (defdefdef put (fnfnfn [g i x-or-o] ...)) ;; returns g, but with i set to x-or-o
11 (defdefdef not-final? (fnfnfn [g] ...)) ;; returns true iff g is not final
12

13 (defdefdef a->b (chanchanchan)) (defdefdef b<-a a->b) ;; b<-a is an alias of a->b
14 (defdefdef b->a (chanchanchan)) (defdefdef a<-b b->a) ;; a<-b is an alias of b->a
15

16 (threadthreadthread ;; for :alice
17 (looplooploop [g initial-grid]
18 (letletlet [i (get-blank g)
19 g (put g i cross)]
20 (>!!>!!>!! a->b i)
21 (ififif (not-final? g)
22 (letletlet [i (<!!<!!<!! a<-b)
23 g (put g i nought)]
24 (ififif (not-final? g)
25 (recurrecurrecur g))))))
26 (close!close!close! a->b))

27 (threadthreadthread ;; for :bob
28 (looplooploop [g initial-grid]
29 (letletlet [i (<!!<!!<!! b<-a)
30 g (put g i cross)]
31 (ififif (not-final? g)
32 (letletlet [i (get-blank g)
33 g (put g i nought)]
34 (>!!>!!>!! b->a i)
35 (ififif (not-final? g)
36 (recurrecurrecur g))))))
37 (close!close!close! b->a))

Fig. 2. Implementation of Tic–Tac–Toe (dashed arrows: matching send/receive)

Safety. The implementation in Fig. 2 runs fine—supposedly—but to really
ensure that it satisfies the specification in Fig. 1 (written independently), the
programmer can add a monitor and instrumentation. The few changes needed,
are shown in Fig. 3: to add instrumentation, on line 1 (which replaces line 1 in
Fig. 2), discourje.core.async is loaded instead of clojure.core.async; to add a
monitor, on lines 12–14 (which replace line 12–14), a monitor is created for ses-
sion :ttt, and then, channels a->b and b->a are associated with a sender, receiver,
and monitor. No other changes are needed: notably, the code that implement
roles :alice and :bob in Fig. 2 stays exactly the same. This shows that Discourje
is non-invasive to deploy and start using.

With these changes in place, safety is guaranteed: if a non-compliant channel
action were to be attempted, the monitor prevents it from happening and throws
an exception. Because the implementation in Fig. 2 actually satisfies the speci-
fication in Fig. 1, an exception is never thrown. In contrast, if the programmer
were to change Long to String on line 7 in Fig. 1, an exception is always thrown;
if they were to change parparpar to catcatcat on line 9, an exception is sometimes thrown,
depending on the execution and scheduling of threads.

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 495

1 (require '[discourje.core.async :refer [threadthreadthread chanchanchan close!close!close! >!!>!!>!! <!!<!!<!!]])

12 (defdefdef m (monitormonitormonitor (sessionsessionsession :ttt [])))
13 (linklinklink a->b (rolerolerole :alice) (rolerolerole :bob) m)
14 (linklinklink b->a (rolerolerole :bob) (rolerolerole :alice) m)

Fig. 3. Ensuring safety of Tic–Tac–Toe

1 (defroledefroledefrole :player)
2

3 (defsessiondefsessiondefsession :rps [ids]
4 (:rps-round ids empty-set))
5

6 (defsessiondefsessiondefsession :rps-round [ids co-ids]
7 (ififif (> (count ids) 1)
8 (catcatcat (par-everypar-everypar-every [i ids
9 j (disj player-ids i)]

10 (-->-->--> String (:player i) (:player j)))
11 (alt-everyalt-everyalt-every [winner-ids (power-set ids)]
12 (letletlet [loser-ids (difference ids winner-ids)]
13 (parparpar (:rps-round winner-ids (union co-ids loser-ids))
14 (par-everypar-everypar-every [i loser-ids
15 j (disj (union ids co-ids) i)]
16 (closecloseclose (:player i) (:player j)))))))))

Fig. 4. Discourje specification of Rock–Paper–Scissors

3 The Tour: Rock–Paper–Scissors

Overview. We continue the tour with a program that simulates a game of
Rock–Paper–Scissors.7 The program consists of k threads and k2 − k directed
channels from every thread to every other thread. In every round, every thread
chooses an item—rock, paper, or scissors—and sends it to every other thread;
then, when all items have been received, every thread determines if it goes to
the next round. This example demonstrates the following features:

– Specification: indexed roles; unbuffered communication (multiparty); con-
ditional; local bindings; quantification (existential; unordered universal); ses-
sion parameters (role indices); set operations; non-determinism (implicit).

– Implementation: select; external synchronisation.

7 Rock–Paper–Scissors is a multiplayer game played in rounds. In every round, every
remaining player chooses an item—rock, paper, or scissors—and reveals it. A player
goes to the next round, unless some other player defeats them, while they defeat no
other player, based on the chosen items in the current round (“scissors cuts paper,
paper covers rock, rock crushes scissors”). The last player to remain wins.

496 R. Hamers and S.-S. Jongmans

Specification. A Discourje specification of Rock–Paper–Scissors is shown in
Fig. 4. Auxiliary Discourje functions for operations on sets are typeset in font.

Line 1 defines one role, identified by :player. Lines 3–16 define two sessions,
identified by :rps (one formal parameter for role indices) and :rps-round (two
formal parameters). There are two key differences with Fig. 1 in Sect. 2:

– Whereas roles :alice and :bob in Tic–Tac–Toe are enacted each by a single
thread, role :player in Rock–Paper–Scissors is enacted by multiple threads.
To distinguish between different threads that enact the same role, roles can
be indexed in specifications. For instance, with 0-based indexing, (:player 5)
represents the thread that implements the sixth player.

– Whereas formal parameters of session :ttt-turn in Tic–Tac–Toe range over
roles, those of sessions :rps and :rps-round range over (sets of) role indices.
This exemplifies that session parameters can range over arbitrary values.

Session :rps-round represents one round of the game; threads indexed by
elements in set ids are still in, while threads indexed by elements in set co-ids
are already out. If fewer than two threads are still in (ififif), the session is effectively
empty. Otherwise, session :rps-round prescribes a concatenation:

1. First, there is an unordered universal quantification (par-everypar-everypar-every) of local vari-
able i over domain ids, and simultaneously, local variable j over domain “ids
without i” (disj). In general, an unordered universal quantification gives rise
to a “big parallel” of branches, each of which is formed by binding values in
domains to local variables (cf. parallel for-loops). In this particular example,
every such branch prescribes a communication of a message of type String
from (:player i) to (:player j), unbuffered. The idea is that every (:player
i) sends its chosen item to every other in-game (:player j), in no particular
order; the order is an implementation detail.

2. Then, there is an existential quantification (alt-everyalt-everyalt-every) of local variable
winner-ids over domain “set of subsets of ids” (power-set). Similar to
unordered universal quantification, in general, existential quantification gives
rise to a “big choice” of branches. In this particular example, every such branch
prescribes a binding (letletlet) of local variable loser-ids to “ids without winner-
ids” (difference), after which there is a parallel:
(a) Concurrently, there is another instance of session :rps-round, but now

with only winner-ids retained from ids, and with loser-ids added to
co-ids (union). The idea is that only every (:player i) that is a winner
this round goes to the next round.

(b) Concurrently, there is an unordered universal quantification of i over
loser-ids, and simultaneously, j over “all indices except i”. Every branch
of this “big parallel” prescribes a close of the channel from (:player i) to
(player j). The idea is that every (:player i) that is a loser this round
closes its channel to every other in-game or out-game (:player j).

Thus, the idea of the existential quantification is, for every possible subset of
winners, that the winners stay in the game, while the losers go out.
We note that the usage of existential quantification in this way makes the

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 497

1 (defdefdef k ...) ;; number of threads (e.g., read from stdin)
2

3 (defdefdef rock "rock") (defdefdef paper "paper") (defdefdef scissors "scissors") ;; items
4

5 (defdefdef rock-or-paper-or-scissors (fnfnfn [] ...)) ;; returns an item
6 (defdefdef winner-ids (fnfnfn [r] ...)) ;; returns winners in round r
7 (defdefdef winner-or-loser? (fnfnfn [r i] ...)) ;; returns true iff thread i is
8 ;; winner or loser in round r
9 (defdefdef chans (mesh chanchanchan (range k)))

10 (defdefdef barrier (java.util.concurrent.Phaser. k))
11

12 (doseq [i (range k)]
13 (threadthreadthread ;; for role (:player i)
14 (looplooploop [ids (range k)]
15 (letletlet [item (rock-or-paper-or-scissors)
16 opponent-ids (remove #{i} ids)
17 round (looplooploop [acts (into (puts chans [i item] opponent-ids)
18 (takes chans opponent-ids i))
19 round {}] ;; map from ids to items (initially empty)
20 (ififif (empty? acts)
21 (assoc round i item)
22 (letletlet [[v c] (alts!!alts!!alts!! acts)]
23 (recurrecurrecur (remove #{[c item] c} acts)
24 (assoc round (putter-id chans c) v)))))]
25 (.arriveAndAwaitAdvance barrier)
26 (ififif (winner-or-loser? round i)
27 (dododo (.arriveAndDeregister barrier)
28 (doseq [j (remove #i (range k))]
29 (close!close!close! (chans i j))))
30 (recurrecurrecur (winner-ids round)))))))

Fig. 5. Implementation of Rock–Paper–Scissors, excerpt

specification implicitly non-deterministic: different branches may start with
the exact same (sequence of) channel action(s), until a “distinguishing” chan-
nel action happens. This requires non-trivial bookkeeping to support.

Session :rps represents the whole game. It prescribes an initial instance of
session :rps-round, where all threads are in, and no threads are out (empty-set).

In addition to existential quantification and unordered universal quantifica-
tion, there is support for ordered universal quantification (cat-everycat-everycat-every): similar to
the former two, the latter one gives rise to a “big concatenation” of branches (cf.
sequential for-loops). We note that quantification domains need to be finite to
ensure that checking whether a channel action is safe can happen in finite time.

The syntax and semantics of the functions for operations on sets are the same
as those in standard library clojure.set, to make Discourje easy to learn.

498 R. Hamers and S.-S. Jongmans

Implementation. A Clojure implementation of Rock–Paper–Scissors is shown
in Fig. 5 (excerpt; some details are left out to save space). Auxiliary Discourje
functions are typeset in font; shading indicates external Java calls.

Line 1 defines a constant for the number of threads k. Lines 3–7 define con-
stants and functions to represent Rock–Paper–Scissors concepts. Line 9 defines
a collection of k2 − k unbuffered channels that implement the infrastructure,
intended to be used as a fully connected mesh network; the threads are rep-
resented by indices in the range from 0 to k (exclusive). We note that mesh is
“merely” an auxiliary Discourje function to simplify defining collections of chan-
nels; just as the other auxiliary Discourje functions used in Fig. 5, it works also
without adding a monitor or instrumentation. Line 10 defines a reusable syn-
chronisation barrier, imported from Java standard library java.util.concurrent,
leveraging Clojure’s interoperability with Java; shortly, we clarify the need for
this.

Lines 12–30 define k copies of a thread that implements role :player. Every
such thread executes two parametrised loops: an outer one, each of whose iter-
ations comprises a round, and an inner one, each of whose iterations comprises
a channel action (send or receive, indirectly using select). Salient aspects:

– According to the specification (Fig. 4), in the first half of every round (lines
8–10), the items that are chosen by in-game threads are communicated among
them. This can be problematic: as channels are unbuffered, sends and receives
are blocking until reciprocal channel actions are performed, so unless threads
agree on a global order to perform such individual channel actions, deadlocks
are looming. But, global orders are hard to get right and brittle to maintain.
An alternative solution is to use selects: in general, a select consumes a col-
lection of channel actions as input, then blocks until one of those actions
becomes enabled, then performs that action, then unblocks, and then pro-
duces that action’s output as output. Thus, a select performs one channel
action from a collection, depending on its enabledness at run-time.
In this particular example, instead of performing globally ordered individ-
ual sends and receives, every thread performs a series of selects (alts!!alts!!alts!!) in
the inner loop. Initially, the collection of channel actions consists of all sends
(puts) and receives (takes) that a thread needs to perform in a round. When
a select finishes, the channel action that was performed is removed from the
collection, and the inner loop continues. Because every thread behaves in this
way, reciprocal channel actions are always enabled, so every thread makes
progress. Thus, by using selects, the order in which communications happen,
is not implemented (nor is it specified), but deadlocks are still avoided.

– According to the specification (Fig. 4), there is a strict order between the first
half of every round (lines 8–10) and the second half (lines 11–16): all channel
actions that belong to the first half need to have happened before proceeding
to the second half. This can be problematic: additional synchronisation or
timing measures are needed to ensure that “fast threads”—those that perform
their channel actions early—wait for “slow threads” to catch up.

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 499

One solution is to extend the session with additional communications. An
alternative solution is to mix communication primitives with synchronisation
primitives. In this particular example, we adopt the latter solution: we mix
channels with a barrier from java.util.concurrent (shaded code in Fig. 5).
This demonstrates that channel-based programming abstractions (checked
using Discourje) can be mixed seamlessly with other concurrency libraries
(not checked), which is common practice [44,45].

Safety. A monitor and instrumentation can be added as in Fig. 3.

4 The Tour: Go Fish

Overview. We end the tour with a program that simulates a game of Go
Fish.8 Like the Rock–Paper–Scissors program in Sect. 3, the Go Fish program
consists of k + 1 threads (players, plus dealer), and k2 + k channels from every
thread to every other thread; unlike the Rock–Paper–Scissors program, however,
all interactions among threads happen through channels (no need for external
barriers, locks, etc.). This example demonstrates the following features:

– Specification: user-defined message types; repetition (0-or-more); quantifi-
cation (ordered universal); non-determinism (explicit).

– Implementation: message type-based control flow.

Specification. A Discourje specification of Go Fish is shown in Fig. 6.
Line 1 defines two roles, identified by :dealer (enacted by a single thread)

and :player (multiple threads). Lines 3–29 define two sessions, identified by :gf
and :gf-turn. Lines -7–0 define six user-defined message types.

Session :gf-turn represents one turn of (:player i). It prescribes a “big
choice”. In every branch, the idea is as follows. First, (:player i) asks (:player
j) for some card. Then, there is a choice:

1. Either, (:player j) replies with the card that it was asked for, which happens
to be the last card that (:player i) needs (to complete its last group), so it
informs (:dealer), and the game ends.

2. Or, (:player j) replies with the card that it was asked for, which does not
happen to be the last card that (:player i) needs, so (:player i) takes
another turn, and the game continues.
We note that the specification is explicitly non-deterministic: the first branch
and the second branch both start with the same channel action.

8 Go Fish is a multiplayer game played with a standard 52-card deck. A dealer shuffles
the deck and deals an initial hand to every player. Then, players take turns to collect
groups of cards of the same rank. Every turn, the active player asks a passive player
for a card. If the asked player has it, the asking player gets it and takes another turn;
if not, the asked player tells the asking player (“go”), the asking player gets a card
from the dealer (“fish”), and the turn is passed to the asked player. The first player
to hold only complete groups wins. (This version of Go Fish is due to Parlett [38].).

500 R. Hamers and S.-S. Jongmans

1 (defroledefroledefrole :dealer) (defroledefroledefrole :player)
2

3 (defsessiondefsessiondefsession :gf [ids]
4 (catcatcat (par-everypar-everypar-every [i ids]
5 (cat-everycat-everycat-every [_ (range 5)]
6 (-->-->--> Card :dealer (:player i))))
7 (alt-everyalt-everyalt-every [i ids]
8 (catcatcat (-->-->--> Turn :dealer (:player i))
9 (:gf-turn i ids)))

10 (par-everypar-everypar-every [i ids]
11 (catcatcat (closecloseclose :dealer (:player i))
12 (parparpar (catcatcat (*** (-->-->--> Card (:player i) :dealer))
13 (closecloseclose (:player i) :dealer))
14 (par-everypar-everypar-every [j (disj ids i)]
15 (closecloseclose (:player i) (:player j))))))))
16

17 (defsessiondefsessiondefsession :gf-turn [i ids]
18 (alt-everyalt-everyalt-every [j (disj ids i)]
19 (catcatcat (-->-->--> Ask (:player i) (:player j))
20 (altaltalt (catcatcat (-->-->--> Card (:player j) (:player i))
21 (-->-->--> OutOfCards (:player i) :dealer))
22 (catcatcat (-->-->--> Card (:player j) (:player i))
23 (:gf-turn i ids))
24 (catcatcat (-->-->--> Go (:player j) (:player i))
25 (-->-->--> Fish (:player i) :dealer)
26 (altaltalt (-->-->--> Card :dealer (:player i))
27 (-->-->--> OutOfCards :dealer (:player i)))
28 (-->-->--> Turn (:player i) (:player j))
29 (:gf-turn j ids))))))

-7 (defrecorddefrecorddefrecord Turn [])
-6 (defrecorddefrecorddefrecord Ask [s r])
-5 (defrecorddefrecorddefrecord Card [s r])
-4 (defrecorddefrecorddefrecord OutOfCards [])
-3 (defrecorddefrecorddefrecord Go [])
-2 (defrecorddefrecorddefrecord Fish [])
-1 ;; above, parameters s and r
0 ;; abbreviate suit and rank

Fig. 6. Discourje specification of Go Fish, including message types

3. Or, (:player j) does not reply with the card that it was asked for, so (:player
i) tries to “fish” a card from :dealer, after which (:player i) passes the turn
to (:player j), and the game continues.

Session :gf represents the whole game. It prescribes a concatenation:

1. First, there is a “big parallel”. The idea is that :dealer deals every player an
initial hand of five cards, in no particular order (implementation detail).

2. Then, there is a “big choice”. The idea is that :dealer passes the first turn
to one of the players (implementation detail). During the game, the players
pass the turn among themselves unbeknownst to :dealer.

3. Then, there is a “big parallel”. The idea is that the game has ended at this
point, so :dealer closes its channel to every (:player i), in no particular
order (implementation detail), after which every (:player i) sends its hand
back to :dealer through the oppositely directed channel, closes that channel,
and closes its channel to every other (:player j), in no particular order.

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 501

1 (doseq [i (range k)]
2 (threadthreadthread ;; for (:player i)
3 (... (letletlet [[v c] (alts!!alts!!alts!! ...)]
4 (condp = (type v)
5 Turn (... (letletlet [v (<!!<!!<!! ...)]
6 (condp = (type v)
7 Card ...
8 Go ...))) ;; another <!! and condp in this case
9 Ask ...

10 nil ...)))))

11 (threadthreadthread ...) ;; for :dealer

Fig. 7. Implementation of Rock–Paper–Scissors, excerpt

Implementation. A Clojure implementation of Go Fish is shown in Fig. 7
(excerpt; many details are left out to save space).

To demonstrate that Discourje supports message type-based control flow,
Fig. 7 shows fragments of code where messages are received—directly with <!!<!!<!!
and indirectly with alts!!alts!!alts!!—by threads that implement role :player. Specifically:

– On line 3, alts!!alts!!alts!! is used to receive a message v from another :player or from
:dealer. This message is either of type Turn (received from another :player),
or of type Ask (idem), or nil (“received” from :dealer).
We note that a “receive” of nil happens only, and automatically, when the
channel from :dealer to (:player i) is closed. Such a degenerate “receive” is
used by (:player i) to detect that the game has ended.

– On line 5, <!!<!!<!! is used to receive a message of type Card or Go from (:player
j), to which a message of type Ask was sent previously (not shown).

Safety. A monitor and instrumentation can be added as in Fig. 3.

5 Foundation

Overview. Discourje is built on a formal foundation, inspired by process algebra
(e.g., [15]) and multiparty session types (e.g., [46]). In a nutshell, let S and I be
sets of specifications and implementations. Then, given a specification S ∈ S and
an implementation I ∈ I, the “game” is to check if a trace of I is also a trace of
S. We briefly summarise the theory (for unbuffered channels), based on [22].

Specification. Let R be a set of roles, ranged over by p, q, r. Let F, V, X,
and E be sets of functions, values, variables, and expressions, ranged over by
f , v, x, and e, such that F ⊆ V ⊆ E and X ⊆ E; for simplicity, we leave the
elements of F, V, E, and X unspecified (although, we stipulate that E contains
at least boolean, numerical, and lambda expressions). Let X̃ and Ẽ be sets of
lists of variables and lists of expressions, ranged over by ẽ and x̃. The syntax of
specifications is defined as follows (with corresponding Discourje macros):

502 R. Hamers and S.-S. Jongmans

S ∈ S ::= 1
∣
∣

-->-->-->
︷ ︸︸ ︷

r1[e1]�r2[e2] :f
∣
∣

closecloseclose
︷ ︸︸ ︷

r1[e1] ��r2[e2]
∣
∣

catcatcat
︷ ︸︸ ︷

S1 · S2

∣
∣

altaltalt
︷ ︸︸ ︷

S1 + S2

∣
∣

S1 ‖ S2
︸ ︷︷ ︸

parparpar

∣
∣ e � S1 � S2

︸ ︷︷ ︸

ififif

∣
∣ X(ẽ)

︸ ︷︷ ︸

“call”

∣
∣ 〈S | X1(x̃1) = S1

︸ ︷︷ ︸

defsessiondefsessiondefsession

, . . . , Xn(x̃n) = Sn
︸ ︷︷ ︸

defsessiondefsessiondefsession

〉

Term 1 , which represents a skip, is the only term for which no corresponding
Discourje macro exists; its shading indicates that it is used primarily/ only to
define the operational semantics (it should not be used directly). Conversely,
Discourje macro calls for which no corresponding term exist, are encodable. For
instance, (cat-everycat-everycat-every [x (range 5)] ...), with x free in the ellipses, corresponds
with 〈X(5) | X(x) = (x > 1 � (. . . · X(x − 1)) � (x > 0 � . . . � 1)〉.

1 ↓ [S↓-One]
S1 ↓ and S2 ↓

S1 · S2 ↓ [S↓-Cat]
Si∈{1,2} ↓
S1 + S2 ↓ [S↓-Alt]

Fig. 8. Operational semantics of specifications (termination), excerpt

ei ⇓ i and ej ⇓ j and (f v) ⇓ true

p[ei] q[ej] :f
p[i]q[j]!?v−−−−−−→ 1

[S-Unbuf]
ei ⇓ i and ej ⇓ j

p[ei] q[ej]
p[i]q[j]•−−−−−→ 1

[S-Close]

S1
α−→ S′

1

S1 · S2
α−→ S′

1 · S2
[S-Cat1]

S1 ↓ and S2
α−→ S′

2

S1 · S2
α−→ S′

2

[S-Cat2]
Si∈{1,2}

α−→ S′

S1 + S2
α−→ S′ [S-Alt]

Fig. 9. Operational semantics of specifications (reduction), excerpt

The operational semantics of specifications is defined in terms of evaluation
relation ⇓, termination predicate ↓, and labelled reduction relation →. Labels,
ranged over by α, are of the form p[i]q[j]!?v (unbuffered send and receive; hand-
shake) and p[i]q[j]• (close). A subset of rules are shown in Figs. 8–9; they are
standard (cf. Basic Process Algebra [15], plus merge, conditional and recursion).

Implementation. The syntax of implementations is defined as follows (it does
not cover all features of Clojure used in Sects. 2–4, but a smaller core set):

I ∈ I ::= skip
∣
∣ if I1 I2 I3

∣
∣ loop x̃ ẽ I

∣
∣ recur ẽ

∣
∣ I1 · I2

∣
∣

I1 ‖ I2
∣
∣ chan

∣
∣ close e

∣
∣ send e1 e2

∣
∣ recv e x

∣
∣ select Ĩ

The operational semantics of the calculus is defined in terms of labelled
reductions of pairs (I,H), where H is a heap (map from locations to channel

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 503

Fig. 10. Operational semantics of implementations, excerpt

states). As we cover only unbuffered channels in this paper (buffered channels
are covered elsewhere [22]), a channel state is represented by � (if the channel
is open) of ⊥ (closed). Labels are of the form �!?v and �•. A subset of rules are
shown in Fig. 10 (notably, a structural congruence rule has been omitted).

Safety. Let † be a function from heap locations to sender–receiver pairs; it
corresponds with the linkage of channels to a monitor (Fig. 3). Abusing notation,
we write †(�!?v) and †(�•) instead of †(�)!?v and †(�)•.

We formalise safety (“bad channel actions never happen”) in terms of simu-
lation. Specifically, implementation I is †-simulated by specification S if there
exists a � ⊆ I × S such that: (1) I � S, and (2) for all Î , Î ′ ∈ I and Ŝ ∈ S, if
Î � Ŝ and Î

α−→ Î ′, then there exists an Ŝ′ ∈ S such that Î ′ � Ŝ′ and Ŝ
†(α)−−−→ Ŝ′.

To ensure safety at run-time, a monitor dynamically constructs a simulation
relation to check if the implementation is simulated by the specification, incre-
mentally, as channel actions are performed. A subtle—but important—detail is
that the relation is constructed not for the whole reduction relation of the imple-
mentation, but only for a “linear” subrelation (a trace; the actual execution).

6 Conclusion

Related Work. The Discourje project is strongly influenced by work on mul-
tiparty session types (MPST) [24]. The idea of MPST is to specify protocols as
behavioural types [1,28] against which threads are subsequently type-checked;
the theory guarantees that static well-typedness of threads at compile-time
implies dynamic safety of their channel actions at run-time. In recent years,
several practical implementations were developed, mostly for statically typed
languages (e.g., C [37], Java [26,27], Scala [42], F# [34], Go [7]), and to lesser
extent for dynamically typed languages (e.g., Python [25], Erlang [35]).

504 R. Hamers and S.-S. Jongmans

Discourje takes advantage of two key properties of the application domain
to offer higher expressiveness than existing MPST tools: we apply run-time ver-
ification instead of compile-time analysis, and we target shared-memory pro-
grams instead of distributed systems. The former means that no implementa-
tions are conservatively rejected (so, Discourje supports more implementations);
the latter means that no decomposition of “global” specifications into “local”
specifications—one for every role—is required, which is needed in existing MPST
tools, but often not possible [7] (so, Discourje supports more specifications).
Notably, we support non-deterministic choice and value-dependent control flow
in specifications. To our knowledge, in the context of MPST, we are the first to
leverage run-time verification and shared memory together, although they have
been considered in isolation:

– There are MPST approaches that combine static type-checking with a form of
distributed run-time monitoring and/or assertion checking [4,5,13,33,34]. In
contrast to Discourje, however, these dynamic techniques still rely on decom-
position; none of the specifications in this paper are supported.

– Decomposition-free MPST has also been explored by López et al. [32,41].
Their idea is to specify MPI communication protocols in an MPI-tailored
DSL, inspired by MPST, and verify the implementation against the specifi-
cation using deductive verification tools (VCC [12] and Why3 [14]). However,
this approach does not support push-button verification: considerable manual
effort is required. In contrast, Discourje is fully automated.

Verification of shared-memory concurrency with channels has received atten-
tion in the context of Go [30,31,36,43]. However, in addition to relying on static
techniques (unlike Discourje), emphasis in these works is on checking deadlock-
freedom, liveness, and generic safety properties, while we focus on program-
specific protocol compliance. Castro et al. [7] also consider protocol compliance
for Go, but their specification language is substantially less expressive than ours;
none of the specifications in this paper are supported.

We are aware of only two other works that use formal techniques to reason
about Clojure programs: Bonnaire-Sergeant et al. [6] formalized the optional type
system for Clojure and proved soundness, while Pinzaru et al. [39] developed a
translation from Clojure to Boogie [2] to verify Clojure programs annotated with
pre/post-conditions. Discourje seems the first to target concurrency in Clojure.

Future Work. We are currently working towards several new features: (1)
automated recovery when a violation is detected, instead of throwing an excep-
tion; (2) meta-verification of specifications, to detect “insensible” specifications;
(3) first-class support for histories, to improve expressiveness with history-based
conditionals. Also, we are interested to explore “weaving”, as in aspect-oriented
programming [29], to further reduce the effort of adding instrumentation [3].

Finally, research is needed to better understand the effectiveness of Discourje
(e.g., in terms of reduced development costs). In particular, we would like to gain
insight into difficulties that programmers face when writing specifications. We

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 505

try to make Discourje easy to learn and use by supporting standard Clojure
idioms wherever possible (e.g., for regular expressions; Sect. 2), but scientific
evidence on usability is still to be gathered.

Acknowledgements. We thank Luc Edixhoven and anonymous reviewers for com-
ments on an earlier version of this paper. Funded by the Netherlands Organisation of
Scientific Research (NWO): 016.Veni.192.103.

A Clojure

Standard library clojure.core:

– (defdefdef x e): first evaluates e to v; then binds x to v in the global environment.
– (ififif e1 e2 e3): first evaluates e1; if true, evaluates e2; else, evaluates e3.
– (letletlet [x1 e1 ... xn en] e): first evaluates e1 to v1; then evaluates e2 to v2

with x1 bound to v1; ...; then evaluates en to vn with x1, ..., xn−1 bound to
v1, ..., vn−1; then evaluates e with x1, ..., xn bound to v1, ..., vn.

– (fnfnfn [x1 ... xn] e1 ... em): evaluates to a function with parameters x1, ...,
xn and creates a recursion point; then, when applied to arguments v1, ..., vn,
sequentially evaluates e1, ..., em with x1, ..., xn bound to v1, ..., vn.

– (looplooploop [x1 e1 ... xn en] e): same as letletlet, but also creates a recursion point.
– (recurrecurrecur e1 ... en): first evaluates e1, ..., en to v1, ..., vn; then evaluates the

nearest recursion point with x1, ..., xn bound to v1, ..., vn.

Standard library clojure.core.async:

– (threadthreadthread e): starts a new thread that evaluates e.
– (chanchanchan): evaluates to a new unbuffered channel.
– (close!close!close! e): first evaluates e to channel c; then closes c.
– (>!!>!!>!! e1 e2): first evaluates e1 to channel c; then evaluates e2 to v; then sends

v through c.
– (<!!<!!<!! e): first evaluates e to channel c; then receives a value through c.
– (alts!!alts!!alts!! [a1 ... an]): for every ai of the form [ei,1 ei,2] (send) or ei (receive),

evaluates ei,1 and ei to channel ci, and then, evaluates ei,2 to v; then, waits
until one of these channel actions can be performed; then, performs a channel
action that can be performed (non-deterministically selected).

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

https://doi.org/10.1007/11804192_17

506 R. Hamers and S.-S. Jongmans

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

4. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

5. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15375-4_12

6. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for Clojure. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 68–94.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_4

7. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

8. Clojure Team: Clojure - Clojure core.async Channels, 28 June 2013. https://
clojure.org/news/2013/06/28/clojure-clore-async-channels. Accessed 1 Sept 2019

9. Clojure Team: Clojure - State of Clojure 2019 Results, 04 February 2019. https://
clojure.org/news/2019/02/04/state-of-clojure-2019. Accessed 1 Sept 2019

10. Clojure Team: Clojure - State of Clojure 2020 Results, 20 February 2019. https://
clojure.org/news/2020/02/20/state-of-clojure-2020. Accessed 28 May 2020

11. Clojure Team: Clojure (nd). https://clojure.org. Accessed 1 Sept 2019
12. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,

S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2

13. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods Syst. Des. 46(3), 197–225 (2015)

14. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

15. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-04293-9

16. Go Team: Go 2016 Survey Results - The Go Blog, 03 June 2017. https://blog.
golang.org/survey2016-results. Accessed 1 Sept 2019

17. Go Team: Go 2017 Survey Results - The Go Blog, 26 February 2018. https://blog.
golang.org/survey2017-results. Accessed 1 Sept 2019

18. Go Team: Go 2018 Survey Results - The Go Blog, 28 March 2019. https://blog.
golang.org/survey2018-results. Accessed 1 Sept 2019

19. Go Team: Go Developer Survey 2019 Results - The Go Blog, 20 April 2020. https://
blog.golang.org/survey2019-results. Accessed 8 May 2020

20. Go Team: Effective Go - The Go Programming Language (nd). https://golang.
org/doc/effective_go.html. Accessed 8 May 2020

21. Go Team: The Go Programming Language (nd). https://golang.org. Accessed 1
Sept 2019

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-662-49498-1_4
https://clojure.org/news/2013/06/28/clojure-clore-async-channels
https://clojure.org/news/2013/06/28/clojure-clore-async-channels
https://clojure.org/news/2019/02/04/state-of-clojure-2019
https://clojure.org/news/2019/02/04/state-of-clojure-2019
https://clojure.org/news/2020/02/20/state-of-clojure-2020
https://clojure.org/news/2020/02/20/state-of-clojure-2020
https://clojure.org
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9
https://blog.golang.org/survey2016-results
https://blog.golang.org/survey2016-results
https://blog.golang.org/survey2017-results
https://blog.golang.org/survey2017-results
https://blog.golang.org/survey2018-results
https://blog.golang.org/survey2018-results
https://blog.golang.org/survey2019-results
https://blog.golang.org/survey2019-results
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org

Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project 507

22. Hamers, R., Jongmans, S.-S.: Discourje: runtime verification of communication
protocols in Clojure. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol.
12078, pp. 266–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5_15

23. Hickey, R.: The Clojure programming language. In: DLS, p. 1. ACM (2008)
24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:

POPL, pp. 273–284. ACM (2008)
25. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-

ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
130–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-
1_8

26. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_24

27. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 116–133. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_7

28. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

29. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

30. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: POPL, pp. 748–761. ACM (2017)

31. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in go using behavioural types. In: ICSE, pp. 1137–1148. ACM
(2018)

32. López, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: OOPSLA, pp. 280–298. ACM (2015)

33. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Aspects Comput. 29(5), 877–910 (2017). https://doi.org/
10.1007/s00165-017-0420-8

34. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in f#. In: CC, pp.
128–138. ACM (2018)

35. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC, pp. 98–108. ACM (2017)

36. Ng, N., Yoshida, N.: Static deadlock detection for concurrent go by global session
graph synthesis. In: CC, pp. 174–184. ACM (2016)

37. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0_15

38. Parlett, D.: The Penguin Book of Card Games. Penguin (2008)
39. Pinzaru, G., Rivera, V.: Towards static verification of Clojure contract-based pro-

grams. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019.
LNCS, vol. 11771, pp. 73–80. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-29852-4_5

40. Rust Team: Rust Programming Language (nd). https://rust-lang.org. Accessed 1
Sept 2019

https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-642-40787-1_8
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-030-29852-4_5
https://doi.org/10.1007/978-3-030-29852-4_5
https://rust-lang.org

508 R. Hamers and S.-S. Jongmans

41. Santos, C., Martins, F., Vasconcelos, V.T.: Deductive verification of parallel pro-
grams using why3. In: ICE. EPTCS, vol. 189, pp. 128–142 (2015)

42. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1–
24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

43. Stadtmüller, K., Sulzmann, M., Thiemann, P.: Static trace-based deadlock analysis
for synchronous mini-go. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp.
116–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47958-3_7

44. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do Scala developers mix the actor
model with other concurrency models? In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920, pp. 302–326. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39038-8_13

45. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in go. In: ASPLOS, pp. 865–878. ACM (2019)

46. Yoshida, N., Gheri, L.: A very gentle introduction to multiparty session types.
In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol. 11969, pp. 73–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36987-3_5

https://doi.org/10.1007/978-3-319-47958-3_7
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-030-36987-3_5

	Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje Project
	1 Introduction
	2 The Tour: Tic–Tac–Toe
	3 The Tour: Rock–Paper–Scissors
	4 The Tour: Go Fish
	5 Foundation
	6 Conclusion
	A Clojure
	References

