Skip to main content

A Deep Learning Approach for Pulmonary Lesion Identification in Chest Radiographs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12319))

Abstract

Radiography is a primary examination used to diagnose chest conditions, as it is fast, low cost, and widely available. If the physician cannot conclude de diagnosis with the radiography, a computed tomography scan may be required. However, this exam is expensive and has low availability, mainly in the public health system of developing countries and low-income locations, which can delay the treatment and cause complications to the patient’s health condition. Computer-aided diagnosis systems provide more resources for medical diagnostic decision-making, increasing the accuracy of the assessment of the patient’s clinical condition. The main objective of this work is to develop a deep-learning-based approach that performs an automatic analysis of digital images of chest radiographs to aid the detection of pulmonary nodules and masses, aiming to extract sufficient relevant information from the image, optimizing the initial phase of the diagnosis of lung lesions. The developed approach uses neural networks in a dataset of 8,178 annotated chest radiographs extracted from a public dataset. Half of it is of images annotated with “nodule” or “mass”, and the other half is of images with “no findings”. We implemented and tested convolutional neural networks and data preprocessing techniques to create a classification model. A model with five convolution layers that achieved 0.72 accuracy, 0.75 sensitivity, and 0.68 specificity. The proposed approach achieved results comparable to state of the art for lesion identification using limited computational power and can assist radiological practice as a second opinion, which can improve the rates of early diagnosed cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Araujo, L.H., et al.: Lung cancer in Brazil. Jornal Brasileiro de Pneumologia 44(1), 55–64 (2018). https://doi.org/10.1590/s1806-37562017000000135

    Article  Google Scholar 

  3. Bradski, G., Kaehler, A.: OpenCV. Dr. Dobb’s J. Softw. Tools 3 (2000)

    Google Scholar 

  4. Chollet, F., et al.: Keras: deep learning library for theano and tensorflow 7(8) (2015). https://keras.io/k

  5. del Ciello, A., Franchi, P., Contegiacomo, A., Cicchetti, G., Bonomo, L., Larici, A.R.: Missed lung cancer: when, where, and why? Diagn. Interv. Radiol. 23(2), 118–126 (2017). https://doi.org/10.5152/dir.2016.16187

    Article  Google Scholar 

  6. Diederich, S.: Solitary pulmonary nodule: detection and management. Cancer Imaging 6(Special Issue A), S42–S46 (2006). https://doi.org/10.1102/1470-7330.2006.9004

    Article  Google Scholar 

  7. Gibbs, J.M., Chandrasekhar, C.A., Ferguson, E.C., Oldham, S.A.: Lines and stripes: where did they go?–From conventional radiography to CT. Radiographics 27(1), 33–48 (2007)

    Article  Google Scholar 

  8. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hirsch, F.R., Franklin, W.A., Gazdar, A.F., Bunn, P.A.: Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin. Cancer Res. 7(1), 5–22 (2001)

    Google Scholar 

  11. Larici, A.R., et al.: Lung nodules: size still matters. Eur. Respir. Rev. 26(146), 170025 (2017). https://doi.org/10.1183/16000617.0025-2017

    Article  Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  14. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  15. Lo, S.C., Lou, S.L., Lin, J.S., Freedman, M., Chien, M., Mun, S.: Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14(4), 711–718 (1995). https://doi.org/10.1109/42.476112

    Article  Google Scholar 

  16. Marchiori, E., Irion, K.L.: Avanços no diagnóstico radiológico dos nódulos pulmonares. Jornal Brasileiro de Pneumologia 34(1), 2–3 (2008)

    Article  Google Scholar 

  17. Mountain, C.F.: Revisions in the international system for staging lung cancer. Chest 111(6), 1710–1717 (1997). https://doi.org/10.1378/chest.111.6.1710

    Article  Google Scholar 

  18. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  19. Shah, P.K., et al.: Missed non-small cell lung cancer: radiographic findings of potentially resectable lesions evident only in retrospect. Radiology 226(1), 235–241 (2003). https://doi.org/10.1148/radiol.2261011924

    Article  Google Scholar 

  20. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017). https://doi.org/10.3322/caac.21387

    Article  Google Scholar 

  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567 (2015)

  22. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. CoRR abs/1705.02315 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Henrique Pais Pooch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pooch, E.H.P., Alva, T.A.P., Becker, C.D.L. (2020). A Deep Learning Approach for Pulmonary Lesion Identification in Chest Radiographs. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics