Skip to main content

BERTimbau: Pretrained BERT Models for Brazilian Portuguese

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12319))

Included in the following conference series:

Abstract

Recent advances in language representation using neural networks have made it viable to transfer the learned internal states of large pretrained language models (LMs) to downstream natural language processing (NLP) tasks. This transfer learning approach improves the overall performance on many tasks and is highly beneficial when labeled data is scarce, making pretrained LMs valuable resources specially for languages with few annotated training examples. In this work, we train BERT (Bidirectional Encoder Representations from Transformers) models for Brazilian Portuguese, which we nickname BERTimbau. We evaluate our models on three downstream NLP tasks: sentence textual similarity, recognizing textual entailment, and named entity recognition. Our models improve the state-of-the-art in all of these tasks, outperforming Multilingual BERT and confirming the effectiveness of large pretrained LMs for Portuguese. We release our models to the community hoping to provide strong baselines for future NLP research: https://github.com/neuralmind-ai/portuguese-bert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/google-research/bert/blob/master/multilingual.md.

  2. 2.

    https://github.com/neuralmind-ai/portuguese-bert.

  3. 3.

    Mojibake is a kind of text corruption that occurs when strings are decoded using the incorrect character encoding. For example, the word “codificação” becomes “codificação” when encoded in UTF-8 and decoded using ISO-8859-1.

  4. 4.

    We use “sequence” and “sentence” interchangeably. A sentence is any contiguous span of text of arbitrary length.

  5. 5.

    https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt.

References

  1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: COLING 2018, 27th International Conference on Computational Linguistics, pp. 1638–1649 (2018)

    Google Scholar 

  2. Baly, F., Hajj, H., et al.: Arabert: transformer-based model for Arabic language understanding. In: Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection, pp. 9–15 (2020)

    Google Scholar 

  3. Castro, P., Felix, N., Soares, A.: Contextual representations and semi-supervised named entity recognition for Portuguese language, September 2019

    Google Scholar 

  4. Quinta de Castro, P.V., Félix Felipe da Silva, N., da Silva Soares, A.: Portuguese named entity recognition using LSTM-CRF. In: Villavicencio, A., et al. (eds.) PROPOR 2018. LNCS (LNAI), vol. 11122, pp. 83–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99722-3_9

    Chapter  Google Scholar 

  5. Cañete, J., Chaperon, G., Fuentes, R., Pérez, J.: Spanish pre-trained BERT model and evaluation data. In: To Appear in PML4DC at ICLR 2020 (2020)

    Google Scholar 

  6. Delobelle, P., Winters, T., Berendt, B.: RobBERT: a Dutch RoBERTa-based language model. arXiv preprint arXiv:2001.06286 (2020)

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Fonseca, E., Alvarenga, J.P.R.: Wide and deep transformers applied to semantic relatedness and textual entailment. In: Oliveira et al. [22], pp. 68–76. http://ceur-ws.org/Vol-2583/

  9. Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., Smith, N.A.: Don’t stop pretraining: adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964 (2020)

  10. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339 (2018)

    Google Scholar 

  11. Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020)

  12. Kudo, T., Richardson, J.: SentencePiece: a simple and language independent subword tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226 (2018)

  13. Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for russian language. arXiv preprint arXiv:1905.07213 (2019)

  14. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, p. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  15. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016). http://arxiv.org/abs/1603.01360, version 3

  16. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  19. Martin, L., et al.: CamemBERT: a tasty French language model. arXiv preprint arXiv:1911.03894 (2019)

  20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  21. Nguyen, D.Q., Nguyen, A.T.: PhoBERT: pre-trained language models for Vietnamese. arXiv preprint arXiv:2003.00744 (2020)

  22. Oliveira, H.G., Real, L., Fonseca, E. (eds.): Proceedings of the ASSIN 2 Shared Task: Evaluating Semantic Textual Similarity and Textual Entailment in Portuguese, Extended Semantic Web Conference. No. 2583 in CEUR Workshop Proceedings (2020). http://ceur-ws.org/Vol-2583/

  23. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar, October 2014. https://doi.org/10.3115/v1/D14-1162. https://www.aclweb.org/anthology/D14-1162

  24. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237 (2018)

    Google Scholar 

  25. Peters, M.E., Ruder, S., Smith, N.A.: To tune or not to tune? adapting pretrained representations to diverse tasks. In: Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pp. 7–14 (2019)

    Google Scholar 

  26. Polignano, M., Basile, P., de Gemmis, M., Semeraro, G., Basile, V.: AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on Tweets. In: Proceedings of the Sixth Italian Conference on Computational Linguistics (CLiC-it 2019), vol. 2481. CEUR (2019). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074851349&partnerID=40&md5=7abed946e06f76b3825ae5e294ffac14

  27. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding with unsupervised learning. Tech. rep. OpenAI (2018)

    Google Scholar 

  28. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  29. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)

  30. Real, L., Fonseca, E., Gonçalo Oliveira, H.: The ASSIN 2 shared task: a quick overview, pp. 406–412 (02 2020). https://doi.org/10.1007/978-3-030-41505-1_39

  31. Rodrigues, R., da Silva, J., Castro, P., Felix, N., Soares, A.: Multilingual transformer ensembles for Portuguese natural language tasks. In: Oliveira et al. [22], pp. 27–38. http://ceur-ws.org/Vol-2583/

  32. Rodrigues, R.C., Rodrigues, J., de Castro, P.V.Q., da Silva, N.F.F., Soares, A.: Portuguese language models and word embeddings: evaluating on semantic similarity tasks. In: Quaresma, P., Vieira, R., Aluísio, S., Moniz, H., Batista, F., Gonçalves, T. (eds.) PROPOR 2020. LNCS (LNAI), vol. 12037, pp. 239–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41505-1_23

    Chapter  Google Scholar 

  33. Rodrigues, R., Couto, P., Rodrigues, I.: IPR: the semantic textual similarity and recognizing textual entailment systems. In: Oliveira et al. [22], pp. 39–47. http://ceur-ws.org/Vol-2583/

  34. Santos, C.N.D., Guimaraes, V.: Boosting named entity recognition with neural character embeddings. arXiv preprint arXiv:1505.05008 (2015). https://arxiv.org/abs/1505.05008, version 2

  35. Santos, D., Seco, N., Cardoso, N., Vilela, R.: HAREM: an advanced NER evaluation contest for Portuguese (2006)

    Google Scholar 

  36. Santos, J., Consoli, B., dos Santos, C., Terra, J., Collonini, S., Vieira, R.: Assessing the impact of contextual embeddings for Portuguese named entity recognition. In: 8th Brazilian Conference on Intelligent Systems, BRACIS, Bahia, Brazil, 15–18 October, pp. 437–442 (2019)

    Google Scholar 

  37. Santos, J., Terra, J., Consoli, B.S., Vieira, R.: Multidomain contextual embeddings for named entity recognition. In: IberLEF@SEPLN (2019)

    Google Scholar 

  38. Schuster, M., Nakajima, K.: Japanese and Korean voice search. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152. IEEE (2012)

    Google Scholar 

  39. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp. 1715–1725. Association for Computational Linguistics, August 2016. https://doi.org/10.18653/v1/P16-1162. https://www.aclweb.org/anthology/P16-1162

  40. Speer, R.: ftfy. Zenodo (2019). https://doi.org/10.5281/zenodo.2591652, version 5.5

  41. Taylor, W.L.: “cloze procedure”: a new tool for measuring readability. Journalism Q. 30(4), 415–433 (1953)

    Article  Google Scholar 

  42. Tjong, E.F., Sang, K., Veenstra, J.: Representing text chunks. In: Ninth Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Bergen, Norway, June 1999. https://www.aclweb.org/anthology/E99-1023

  43. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147 (2003). https://www.aclweb.org/anthology/W03-0419

  44. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  45. Vries, W.D., Cranenburgh, A.V., Bisazza, A., Caselli, T., Noord, G.V., Nissim, M.: BERTje: a Dutch BERT model. arXiv preprint arXiv:1912.09582, December 2019

  46. Wagner Filho, J., Wilkens, R., Idiart, M., Villavicencio, A.: The BRWAC corpus: a new open resource for Brazilian Portuguese, May 2018

    Google Scholar 

  47. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016). http://arxiv.org/abs/1609.08144, version 2

  48. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237 (2019)

Download references

Acknowledgements

R Lotufo acknowledges the support of the Brazilian government through the CNPq Fellowship ref. 310828/2018-0. We would like to thank Google Cloud for research credits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souza, F., Nogueira, R., Lotufo, R. (2020). BERTimbau: Pretrained BERT Models for Brazilian Portuguese. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics