Skip to main content

Evaluation of Metaheuristics in the Optimization of Laguerre-Volterra Networks for Nonlinear Dynamic System Identification

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

The main objective of nonlinear dynamic system identification is to model the behaviour of the systems under analysis from input-output signals. To approach this problem, the Laguerre-Volterra network architecture combines the connectionist approach with Volterra-based processing to achieve good performance when modeling high-order nonlinearities, while retaining interpretability of the system’s characteristics. In this research we assess the performances of three metaheuristics in the optimization of Laguerre-Volterra Networks using synthetic input-output data, a task in which only the simulated annealing metaheuristic was previously evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alataris, K., Berger, T., Marmarelis, V.: A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs. Neural Networks 13(2), 255–266 (2000)

    Article  Google Scholar 

  2. Allgöwer, F., Zheng, A.: Nonlinear Model Predictive Control, vol. 26. Birkhäuser, Basel (2012)

    Google Scholar 

  3. de Assis, L.S., Junior, J.R.d.P., Tarrataca, L., Haddad, D.B.: Efficient Volterra systems identification using hierarchical genetic algorithms. Appl. Soft Comput. 85, 105745 (2019)

    Google Scholar 

  4. Brooks, D.G., Verdini, W.A.: Computational experience with generalized simulated annealing over continuous variables. Am. J. Math. Manag. Sci. 8(3–4), 425–449 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Chon, K.H., Holstein-Rathlou, N.H., Marsh, D.J., Marmarelis, V.Z.: Comparative nonlinear modeling of renal autoregulation in rats: Volterra approach versus artificial neural networks. IEEE Trans. Neural Networks 9(3), 430–435 (1998)

    Article  Google Scholar 

  6. Costa, V.O.: Metaheuristics for Laguerre-Volterra networks optimization (2020). https://github.com/vctrop/metaheuristics_for_Laguerre-Volterra_networks_optimization/tree/BRACIS2020

  7. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  8. Geng, K., Marmarelis, V.: Methodology of recurrent Laguerre-Volterra network for modeling nonlinear dynamic systems. IEEE Trans. Neural Netw. Learn. Syst. 28, 1–13 (2016)

    MathSciNet  Google Scholar 

  9. Geng, K., et al.: Mechanism-based and input-output modeling of the key neuronal connections and signal transformations in the CA3-CA1 regions of the hippocampus. Neural Comput. 30(1), 149–183 (2018)

    Article  MathSciNet  Google Scholar 

  10. Geng, K., et al.: Multi-input, multi-output neuronal mode network approach to modeling the encoding dynamics and functional connectivity of neural systems. Neural Comput. 31(7), 1327–1355 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurusamy, S.: Metaheuristic algorithms for the identification of nonlinear systems and multivariable PID controller tuning. Ph.D. thesis, Kalasalingam Academy of Research and Education, Krishnankoil, India (2017)

    Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  13. Hu, E.Y., Yu, G., Song, D., Bouteiller, C.J.M., Berger, W.T.: Modeling nonlinear synaptic dynamics: a Laguerre-Volterra network framework for improved computational efficiency in large scale simulations. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6129–6132 (2018)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 – International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korenberg, M.J., Hunter, I.W.: The identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng. 24(2), A250–A268 (1996). https://doi.org/10.1007/BF02648117

    Article  Google Scholar 

  17. Locatelli, M.: Simulated annealing algorithms for continuous global optimization. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization. NOIA, vol. 62, pp. 179–229. Springer, Boston (2002). https://doi.org/10.1007/978-1-4757-5362-2_6

    Chapter  MATH  Google Scholar 

  18. Marmarelis, P.Z., Marmarelis, V.Z.: Analysis of physiological signals. In: Analysis of Physiological Systems. CBM, pp. 11–69. Springer, Boston (1978). https://doi.org/10.1007/978-1-4613-3970-0_2

  19. Marmarelis, V.Z.: Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21(6), 573–589 (1993). https://doi.org/10.1007/BF02368639

    Article  Google Scholar 

  20. Marmarelis, V.Z.: Modeling methology for nonlinear physiological systems. Ann. Biomed. Eng. 25(2), 239–251 (1997). https://doi.org/10.1007/BF02648038

    Article  Google Scholar 

  21. Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems, vol. 10. Wiley, Hoboken (2004)

    Book  Google Scholar 

  22. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  MATH  Google Scholar 

  23. Mitsis, G.D., Poulin, M.J., Robbins, P.A., Marmarelis, V.Z.: Nonlinear modeling of the dynamic effects of arterial pressure and co2 variations on cerebral blood flow in healthy humans. IEEE Trans. Biomed. Eng. 51(11), 1932–1943 (2004)

    Article  Google Scholar 

  24. Mitsis, G.D., Zhang, R., Levine, B., Marmarelis, V.: Modeling of nonlinear physiological systems with fast and slow dynamics. II. Application to cerebral autoregulation. Ann. Biomed. Eng. 30(4), 555–565 (2002). https://doi.org/10.1114/1.1477448

    Article  Google Scholar 

  25. Nemenyi, P.: Distribution-free multiple comparisons. Ph.D. thesis, Princeton University, New Jersey, United States (1963)

    Google Scholar 

  26. Nourani, Y., Andresen, B.: A comparison of simulated annealing cooling strategies. J. Phys. A Math. Gen. 31(41), 8373 (1998)

    Article  MATH  Google Scholar 

  27. Ogura, H.: Estimation of wiener kernels of a nonlinear system by means of digital Laguerre filters and their fast algorithm. In: Nonlinear Signal and Image Processing, pp. 855–858. IEEE (1995)

    Google Scholar 

  28. Oliphant, T.E.: A Guide to NumPy, vol. 1. Trelgol Publishing, New York (2006)

    Google Scholar 

  29. Palm, G., Pöpel, B.: Volterra representation and wiener-like identification of nonlinear systems: scope and limitations. Q. Rev. Biophys. 18(2), 135–164 (1985)

    Article  Google Scholar 

  30. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007). https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  31. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  32. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stützle, T., et al.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_8

    Chapter  Google Scholar 

  34. Terpilowski, M.: scikit-posthocs: Pairwise multiple comparison tests in Python. J. Open Source Softw. 4(36), 1169 (2019). https://doi.org/10.21105/joss.01169

    Article  Google Scholar 

  35. Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56(2), 259–271 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020)

    Article  Google Scholar 

  37. Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Blackie & Son, London (1930)

    MATH  Google Scholar 

  38. Watanabe, A., Stark, L.: Kernel method for nonlinear analysis: identification of a biological control system. Math. Biosci. 27(1), 99–108 (1975)

    Article  MATH  Google Scholar 

  39. Yang, X., Deb, S., Fong, S., He, X., Zhao, Y.: From swarm intelligence to metaheuristics: nature-inspired optimization algorithms. Computer 49, 52–59 (2016)

    Article  Google Scholar 

  40. Yang, Y.S., Chang, W.D., Liao, T.L.: Volterra system-based neural network modeling by particle swarm optimization approach. Neurocomputing 82, 179–185 (2012)

    Article  Google Scholar 

  41. Yazid, E., Liew, M.S., Parman, S., Kurian, V.J.: Improving the modeling capacity of Volterra model using evolutionary computing methods based on Kalman smoother adaptive filter. Appl. Soft Comput. 35, 695–707 (2015)

    Article  Google Scholar 

  42. Ye, H., Luo, W., Li, Z.: Convergence analysis of particle swarm optimizer and its improved algorithm based on velocity differential evolution. Comput. Intell. Neurosci. 2013, 384125 (2013)

    Article  Google Scholar 

  43. Zhang, Y., Rong, Y., Yan, C., Liu, J., Wu, X.: Kernel estimation of Volterra using an adaptive artificial bee colony optimization and its application to speech signal multi-step prediction. IEEE Access 7, 49048–49058 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor O. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, V.O., Müller, F.M. (2020). Evaluation of Metaheuristics in the Optimization of Laguerre-Volterra Networks for Nonlinear Dynamic System Identification. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics