a r I Universita degli Studi di Trieste
Archivio della ricerca — postprint

Active Learning Embedded
in Incremental Decision Trees

Vinicius Eiji Martins'®)®, Victor G. Turrisi da Costa?®,
and Sylvio Barbon Junior!

L Computer Science Department, Londrina State University, Londrina, PR, Brazil
{vinicius.martins,barbon}@uel.br
2 DISI, University of Trento, Trento, Italy
vg.turrisidacosta@unitn.it

Abstract. As technology evolves and electronic devices become
widespread, the amount of data produced in the form of stream increases
in enormous proportions. Data streams are an online source of data,
meaning that it keeps producing data continuously. This creates the
need for fast and reliable methods to analyse and extract information
from these sources. Stream mining algorithms exist for this purpose, but
the use of supervised machine learning is extremely limited in the stream
domain since it is unfeasible to label every data instance requested to be
processed. Tackling this problem, our paper proposes the use of active
learning techniques for stream mining algorithms, specifically incremen-
tal Hoeffding trees-based. It is important to mention that the active
learning techniques were implemented to match the stream mining con-
straints regarding low computational cost. We took advantage of the
incremental tree original structure to avoid overburdening the original
computational cost when selecting a label. In other words, the statistical
strategy to grow each incremental tree has supported the execution of
active learning. Using techniques of uncertainty sampling, we were able
to drastically reduce the number of labels required at the cost of a very
small reduction in accuracy. Particularly with Budget Entropy there was
an average negative impact of accuracy about 4% using only 14% of
samples labelled.

Keywords: Stream mining - Active learning - Hoeffding trees

1 Introduction

Data streams are an increasingly common resource that produces a large amount
of potentially infinite data in short intervals. Dealing with this type of data,

The authors would like to thank the financial support of the Coordenagdo de Aper-
feioamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, the
National Council for Scientific and Technological Development (CNPq) of Brazil -
Grant of Project 420562/2018-4 - and Fundagéo Araucéria.

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61380-8_25&domain=pdf
http://orcid.org/0000-0002-5669-9055
http://orcid.org/0000-0003-2597-4998
http://orcid.org/0000-0002-4988-0702
https://doi.org/10.1007/978-3-030-61380-8_25

stream mining algorithms need to face a set of challenges, such as where and
how to store data, how to process data in an acceptable time frame and how to
deal with its changes in concepts and underlying distributions [11,22].

A common way to extract useful information and patterns from data is
through the use of supervised machine learning models, including the decision
trees. Incremental decision trees are alternatives from supervised machine learn-
ing algorithms for data stream scenarios, in which each single stream sample
can be used to update a decision tree. A classic example of incremental decision
trees is the Hoeffding Tree (HT) [11], which is based on the Hoeffding Bounds
(HB) theory to identify the best split feature during tree growth. HB has gained
notoriety in the stream mining scenario for its effectiveness, a fact that impelled
its usage in several implementations of incremental decision trees such as Very
Fast Decision Tree (VFDT) [11] and Strict Very Fast Decision Tree [6] (SVFDT),
the latter focuses on reducing the requirement of computational resources.

However, all these algorithms rely on labelled data, which may be expensive
to acquire in the real world and even harder to gather in data stream situa-
tions. The challenges of volume and velocity intensify the problem of labelling
samples from data streams. Some techniques were developed to overcome this
problem for traditional supervised machine learning, such as Semi-Supervised
Learning (SSL) [32] and Active Learning (AL) [14]. SSL assumes a small amount
of labelled data and a large pool of unlabelled data and uses both to train its
model. On the other hand, AL works by intelligently selecting only a subset of
data samples to be labelled, allowing the algorithms to train efficiently in more
realistic conditions [26].

AL does not require labelled instances before the training begins as it will
choose which data instances it will learn from. This is done by asking queries
containing unlabelled data to an oracle that informs it the true label, in several
cases the oracle could be a human specialist [26]. With the application of this
technique, the model only needs to be trained on a small number of highly
informative samples instead of the whole dataset, increasing the efficiency of
the training with minimal accuracy losses, following the constraints of reduced
access to the complete dataset. AL techniques are broken into various categories,
but all are grounded in the same idea: using a sampling technique, the most
informative instances are selected or constructed from the input domain and
sent to an oracle, human or machine, that will label it and return to the learner,
which will then use it to train in a supervised manner.

In recent years, several efforts have been made in the direction to create
joint methods with data stream and AL [1,10,19-21,28]. The goal of the major
part of the proposed algorithms is to tackle Concept Drift and the detection of
Novelty. Concept drift reflects the idea that concepts in the real world are always
changing.

Concept drift was addressed using ensemble learning by some works [1,20, 28].
Ensemble learning is an important solution used in the stream mining commu-
nity since they maintain the advantages present in traditional scenarios, such
as taking advantage of local competencies from classifiers and robustness to

overfitting [7]. Also, ensembles can handle the drifting context ensured by the
diversity of committee members.

In [1] the authors propose a framework for use of AL in ensembles with their
proposed Query-by-bagging and Query-by-boosting methods, both based upon
the paradigm of Query by Committee(QBC) [27]. These methods make the oracle
responsible for choosing the data samples which will be labelled and appended
to the training dataset that will be broken into various windows that will be
used by the ensemble learners to train its models. Besides the fact that concept
drifts are not addressed, the framework has a cost of an additional structure.

Shan et al. [28] proposes a framework for ensemble active learning using an
ensemble composed of a stable permanent classifier that learns from every data
instance that arrives and multiple dynamic ephemeral classifiers that only train
with a limited amount of data. A combination of Uncertainty Sampling and
Random Sampling is used to determine if a sample inside the data block will
be labelled and used to train the ensemble. This combination of a permanent
classifier and multiple short lived classifiers make this framework able to adapt
to sudden and gradual concept drifts while reducing labeling costs by focusing
the queries to the oracle when drift occurs.

In [20] an approach to ensemble active learning is proposed that instead
of selecting instances to query based on the amount of disagreement between
committee members, it uses a Multi-armed bandit approach, where the most
competent member is made responsible for this decision. This approach allows
the ensemble to better adapt under concept drifts, specifically when drifts occur
in regions of data that regular query sampling techniques register low amounts
of uncertainty.

These approaches [1,20, 28] present novel ensemble techniques adapted to AL
and streaming situations, but they introduce additional complexity and costs to
the training procedure.

Alternatively to ensembles, [10] proposed a sequential ID3, grounded on a
sequential probability ratio evaluation to reduce the number of samples sufficient
to perform a split. They affirm that no theoretical bounds are exposing the extent
to which labels can be saved without significantly compromising performance.
However, the AL strategy used in [10] has a cost of memory and additional mech-
anism of control the selection of samples to be labelled. Furthermore, the authors
described the implementation of AL with VFDT as a promising approach.

In this work we combine the use of three Hoeffding Tree implementations with
AL strategies. The implementations are all variations of the VFDT and SVFDT
(SVFDT-I and SVEDT-II). They are robust learners that deal very well with
various streaming situations while also performing memory management [6],
but they are still supervised machine learning techniques that expect labelled
data in the stream. We compared two strategies of AL literature, Entropy-
based [29] and Budget Entropy [34], and proposed a novel mechanism called
Best Budget Entropy. We took advantage of original implementation from the
most memory-friendly HT algorithms to avoid consuming extra memory and
reduce the demand for labels with low-cost AL adaptations. Our results exposed

quite a few reductions in terms of labels without compromising the predictive
performance over a great part of the 26 datasets explored.

In Sect. 2, we introduce the concepts of Active Learning and how it is applied
in streaming situations and the incremental trees. In Sect. 3, we explain how the
experiments were setup and evaluated. In Sect. 4, the results of the experiments
are discussed and analysed and finally, in Sect.5, we conclude the paper and
present directions for future work.

2 Active Learning and Stream Mining

Various challenges permeate data stream mining. The main ones are the volume,
the velocity, the volatility of data and constraints of memory consumption. The
most efficient solutions demand labels, which can pose difficulties to use the solu-
tions within a real-life scenario. An initial work of Zliobaité et al. [34] described
some theoretical strategies to support mechanisms to control and distribute the
labelling over time with balancing capabilities to induce more accurate classifiers
and to detect changes. Our proposal arose from strategies and hypothesis related
to Zliobaité et al.’s contributions.

2.1 Active Learning Strategies

The core of AL strategies is composed by sampling strategies and query decision
approaches, as shown in Fig. 1. The sampling strategies are different forms of
directed search techniques seeking to identify samples from areas of uncertainty.
On the other hand, query decision approaches regard methods to decide whether
or not to query for the true label, so that the predictive model could train itself
with this new instance [34].

Sampling strategies seek for areas in the input domain where the learner
believes it will perform incorrect classifications, as opposed to random sampling
techniques [3]. There are three main sampling strategies in the literature: mem-
bership query synthesis, stream-based and pool-based. Stream and pool-based
are part of selective sampling [26].

Membership query synthesis [2] works by querying new synthesized samples
based on the underlying distribution of the area of uncertainty in the input
domain instead of using the already existing data. This strategy suffers from
difficulty in finding methods to synthesize data instances that a human oracle is
capable of interpreting. For example, when using an image dataset and interpo-
lation for synthesizing the queried samples, the results may be a mix of different
images from the input that does not mean anything to a human, hurdling the
job of the oracle [23]. Selective sampling strategies were formulated to solve this
problem [3] through the use of several approaches to query data from the input
data to the oracle.

Pool-based selective sampling [24] usually assumes the input domain remains
unchanged, contains a small number of n labelled instances and a large amount of
m unlabelled instances. This method runs for various iterations until a stopping

Active Learning

Sampling (Query Decision
Strategies Approaches
Membership Selective . Region of
Query Synthesis Sampling Query Strategies Uncertainty
|)])
Stream-based Pool-based .
Selective Selective Uncer!glnty Query by
s " " Sampling Committee
ampling Sampling
Least . Best Budget Committe-based
Confidence Fixed Entropy Budget Entropy B Entropy Sampling

Fig.1. Overview on the taxonomy of sampling strategies and query decision
approaches. Our approach adaptation is highlighted by the dotted border.

criterion is reached, such as the oracle reaches a budget limit. Each iteration
ranks the most uncertain instances, queries them to the oracle and adds them
to the list of labelled instances, where the model is retrained.

Stream-based selective sampling is the most straightforward method of selec-
tive sampling. As data arrives, it will make the decision to query or not the
instance to the oracle using the querying approach selected. If the learner decides
to not query, that data instance is immediately discarded. This procedure can
be seen in Algorithm 1.

Since we are working in a streaming scenario, the use of stream-based selec-
tive sampling is the most effective. Due to the velocity in which the data arrives,
it is not feasible to use pool-based sampling due to the processes of pooling,
ranking and iterations required. This same constraint limits membership query
synthesis as the underlying distribution of the data needs to be analysed mul-
tiple times due to the changing nature of the data. For that reasons, in this
work, we focused on stream-based selective sampling and suitable query deci-
sion approaches for a stream scenario.

Query decision approaches regards a method to decide whether or not to
query for the true label so that the predictive model can train itself with this
new instance [34]. The most traditional approach consists of creating an explicit
region of uncertainty R(S™) where S™ is the set of m instances in the data
input domain. The learner first trains on n labelled instances, where 0 < n < m,
to compute R(S™) and then simply tests each data instance for membership in
R(S™), creating a collection of instances from which it will query the oracle [3].
Each new instance that falls within the region will further reduce the region
when recalculated [5].

Another approach is to use query strategies to determine the most informa-
tive or uncertain data instances directly and make a decision to query them to

Algorithm 1. Stream-based selective sampling algorithm.
Input:
S': stream of unlabelled data
Q: query decision approach selected
Output:
M: A trained model
Initialize M
while (S has nezt) do
s «— next(S) // Fetch next data instance from stream
0 «—— M.predict(s) // Get prediction outputs for s on M
if (Q.query(o) == True) then
// Ask query approach if the instance should be queried
Query s to the oracle
Receive label for s from oracle and assign it
Train M on s

end
end

the oracle or not. There are many query strategies. Uncertainty Sampling [24]
uses a metric to compute the uncertainty of each data instance and queries it
to the oracle if it falls within a certain threshold. Committee-based sampling [9]
follows the QBC [27] paradigm, with a committee of k£ models, where each mem-
ber classifies a data instance, and the decision to query that instance is based
on the classification disagreement of the members of the committee.

Uncertainty Sampling is the most used query strategy due to its simplicity. In
a binary problem, for example, it would decide to query in case the probability
of the predictions made by the model for either class prediction score is close
to 0.5, indicating that the model is unsure as to which class the data instance
belongs to. For more classes, Least Confidence (LC) [8] may be used. It decides
to query data instances where even the class prediction with highest probability
is low.

A more general and popular approach to uncertainty sampling is to use
entropy [29] (H) (Eq.1), where g; is one of the labels and z}; is the instance to
be queried to the oracle. H represents the uncertainty over the prediction output
distribution with values between 0 (low uncertainty) and log2(n-classes) (high
uncertainty). Technically it is an information-retrieval measure that quantifies
the amount of information needed to encode the distribution [26].

xy = argmax(H (x;)) where H(x) = — Z PO(g;|x)log(PO(gy;|x)) (1)

A way to use entropy is by first fixing the uncertainty threshold z, and if the
entropy value surpasses the specified z value, the data instance being evaluated
is queried to the oracle [33]. A variant of this method is by using a budget value
that limits the number of queries that can be performed. For example, a value of
0.2 means that only 20% of the instances can be labelled, in a streaming situation

we can translate to something like 200 instances every 1000 [34]. We refer to this
method as Budget Entropy. Budgets reflect real-life situations where the oracle
has limited labeling capability and querying must be kept at a minimum.

L. Korycki et al. [19] proposes a method to decrease the number of queries
made under strict budgets by using a hybrid query decision approach that uses
both AL and self-labelling techniques. Self-labeling [31] is a semi-supervised
learning technique that allows for the learner to label a data instance if it has a
high amount of certainty on its class. This can be seen as a direct opposite of AL.
This approach allows the learner to increase the number of instances used for
its training with no cost. However, concept drifts are not taken in consideration
and errors made by the self-labeling mechanism may propagate along the data
stream.

B. Krawczyk [21] proposes a framework that is able to deal with concept
drifts in limited budget situations by increasing the rate of oracle queries when
drift is happening and decreasing in static situations. This framework is simple
and effective, but it also has a very large amount of hyperparameters that require
tuning, such as the labeling strategy and its own parameters and the adjustable
rate of querying.

We proposed another method (highlighted by the dotted box in Fig.1)
grounded on entropy. Instead of a fixed uncertainty threshold, it checks the
entropy of the current instance and the instance that came before, if the entropy
of the current instance is higher, this instance is queried to the oracle. We call
this method Best Budget Entropy. It has the advantages of being very simple
and no hyperparameters are needed, although concept drifts are not considered
directly.

In our work, we compare uncertainly sampling and stream-based selective
sampling, since it is fast and effective and matches our main goal of avoiding
overburdening the stream mining algorithm, particularly the incremental deci-
sion trees with an extra cost when performing AL.

2.2 Incremental Decision Trees

Hoeffding Trees [11] are incremental decision trees optimized for data stream
situations. They were designed to deal with infinitely large datasets and each
data instance must be read at most once in a small constant time. To achieve
that, they use Hoeffding Bounds to assure that the chosen attribute for splitting
with n attributes is the same as if it was chosen with infinite attributes by a
margin of error €. This process is done based on a function G, for example,
Information Gain [25] (Eq.2, where H is the entropy function, x the attribute
and ¢ the label), for n examples, let G(X7) be the highest value and G(X3) the
second highest value among all G(X;) computed for every attribute in X and
that AG = G(X;) — G(X3), for a given d, Hoeffding Bounds guarantee that X
is the correct choice for the split with a probability of 1 — § if n examples were
read at the node being trained and AG > €2.

1G = H(j) — H(g,x) (2)

One implementation of a Hoeffding Tree is the Very Fast Decision Tree
(VEDT) [11]. First, it allows choosing the G to be either Information Gain
or the Gini Index. Additionally, it features a number of optimizations to further
speed up the training process:

— Tiebreak: Tiebreak happens when two attributes have very similar values
from G. Since the decision may require observation of a large number of
samples to be made, this mechanism allows the learner to detect when a tie
happens and simply split on the current best attribute X; if AG < e < 7 for
a given 7.

— G Computation: Since computing G can be expensive, the VFDT allows
accumulation of a minimum number of samples before the G is calculated.
This effectively reduces the total amount of time spent calculating G.

— Memory Management: In order to limit the amount of memory used, once
the maximum memory available is reached, the VFDT deactivates the least
promising leaves in order to free memory for new ones.

— Disabling Poor Attributes: Removing attributes that do not show poten-
tial, memory usage can be further minimized, this is done by dropping
attributes that have a value of G with a difference of at least € to the G
of the best attribute.

— Grace Period: This allows the tree to be initialized with a small subset of
data with a conventional learner, allowing the VFDT to reach better accura-
cies early on with a small number of samples.

— Rescanning: If the data arrives slowly enough or is a small finite dataset,
previously observed samples can be reexamined.

SVFDT [6] is an optimization made on VFDT, it manages to keep a signif-
icantly lower memory footprint than the original VFDT while retaining similar
predictive performance by enforcing a set of restrictions that ensure a minimum
amount of uncertainty, that the leaves observe a similar number of instances and
that the attributes used for the splits have relevance to the statistics.

Additionally, there is a mechanism in place that limits unnecessary growth
in the tree by checking the Entropy and Information Gain values of the leaves
with the other leaves and when the rules for splits in the VFDT were met with
the Eq. 3, where X represents the observed data instances, X their mean, o(X)
their standard deviation and z the observation of a new data instance. It is also
assumed that X follows a normal distribution.

True, ifzx>X —o(X)

False, otherwise

<p(x, X) = { (3)

SVFDT is split into two versions: the SVFDT-I and SVFDT-II. Their dif-
ference consists of an additional set of constraints found in the II version that
allows the node to skip all the constraints set by the growth mechanism. This
set consists of two constraints that check the values of Entropy and Information

Gain for the leaves with their values for when the rules for splits in the VFDT
were met with the Eq. 4.

True, ifx>X +o(X)

False, otherwise

w(z, X) = { (4)

Our approach to AL allows it to easily plug in any stream mining base learner
with minimal cost as it is seamlessly integrated into the learner’s input pipeline.
This means that our active learning methods work as a separate module to the
learner, needing only its prediction statistics to determine what instances should
be queried to the oracle and feeding this data to the classifier. This can be seen
in Fig. 2.

Active Learning
Sample 1 _Get next query
instance —— | | [L.l
Sample 2 . A VEDT | — 3 Stream-based
Sample 3 selective sampling @

Was it
queried?

Data Stream

Uncertainty
Sampling

Train leaf
statistics

threshold No
Z

SVFDT

Perform SVFDT
split attempt

Split allowed?, > Split leaf

No Yes

Sample n

Fig. 2. Overview of stream-based selective sampling coupled to VFDT and SVFDT.

3 Experimental Setup

In this section, we present the experimental definitions to support the proposed
AL method embedded into VEDT, SVFDT-I and SVFDT-II. To evaluate the
impact of the AL methods in the trees, 26 benchmark datasets, commonly used
in data stream mining experiments, were selected: — Datasets from MOA [4]:
Airlines and FElectricity Normalized. — Datasets from the UCI [12]: Poker Hand
and Covertype. — Datasets from Weka [18]: LED24 (with 1M instances and three
files with 0%, 10% and 20% noise each) and RandomRBF (250k instances and
50 features, 500k instances and 10 features and 1M instances and 10 features). —
Datasets from multiple sources: CTU13 [17] (split into 13 files, one per scenario),
hyperplane [13], SEA [30] and Usenet [16].

Prequential evaluation was employed to evaluate the algorithms [15]. Stream-
based sampling was used and Uncertainty Sampling was chosen with the three
entropy variants (Entropy, Budget Entropy and Best Budget Entropy). This was
preferred over calculation of Region of Uncertainty since it is more efficient
considering the streaming scenario. The VFDT and SVFDTs were compared
using the parameters seen in Table 1.

Most hyperparameters were chosen with their default value (tiebreaker, split
criteria, leaf prediction type and binary splits), while for the grace period we
used non-default values and poor attributes are discarded to preserve memory.

Table 1. Parameter values for each incremental tree.

Parameter VFDT | SVFDT-I | SVFDT-II
Split criteria Information gain

Grace period 100 400
Tiebreaker 0.05

Leaf prediction type NBAdaptive

Only binary split False

Disable poor attributes | True

We evaluated the algorithms in terms of predictive performance and queries
reduction for each specific AL strategy. The predictive performance was mea-
sured using accuracy. In this work, our oracle returns the true label for the
queried sample.

Two other metrics were evaluated, Relative Accuracy and Relative Query
Request. Relative Accuracy is the accuracy of each AL experiment compared to
the standard supervised learning accuracy while Relative Query Request is the
percentage of queries made on each experiment related to the total amount of
samples in each dataset.

The algorithms and AL strategies were implemented in Python 3.8. The code
for this implementation can be seen in https://github.com/Vini7x/pystream-act.

4 Results and Discussions

In this section, first, we present a comparison among VFDT, SVFDT-I and
SVFDT-II using the Relative Accuracy and Relative Query Request across sev-
eral z values. Then, we perform a similar evaluation, but using each AL method
across all algorithm to support generalized insights. We observed the queries rate
and the impact over accuracy to discuss the trade-off between the reduction of
labelling and predictive performance.

Regarding AL relative accuracy from the incremental trees, a very similar
performance across four different z values (0.1, 0.2, 0.5 and 0.9) was observed, as
Fig. 3 shows. Also, when compared to the usage of all samples, a slight reduction

10

https://github.com/Vini7x/pystream-act

Algorithm -e- VFDT SVFDT-I SVDFT-Il

Relative Accuracy
a
g

Relative Query Request
o o
3 g

e
=)
3

All samples 0.1 05 0.9

02
uncertainty threshold (z)

Fig. 3. Performance of different incremental trees based on relative accuracy and rel-
ative query reductions over different uncertainty threshold (z) values.

of relative accuracy was observed with the z values of 0.1, 0.2 and 0.5, respec-
tively. A notable reduction was observed when z is equals to 0.9. On the other
hand, considering the Relative Query Request, when z equals 0.1, the number
of labelled samples was reduced to 49% by VFDT and SVFDT-II maintaining
a low reduction in performance of about 4% and 3%, respectively. If we evalu-
ate a trade-off using a rate of Accuracy per Query Request, SVEFDT-II was the
best combination delivering 13% of accuracy reduction using just 33% of original
labelled data, as showed in Table 2.

Table 2. Table of Relative Accuracy and Relative Query request across all uncertainty
threshold (z) and incremental trees.

z Relative Accuracy Relative Query Request
Value VFDT | SVEDT-I | SVFDT-1I | VFDT | SVEDT-I | SVFDT-II
All samples | 1.00 1.00 1.00 1.00 1.00 1.00
z=0.1 0.96 0.97 0.97 0.49 0.50 0.49
z =0.2 0.95 0.96 0.96 0.41 0.41 0.47
z=05 0.93 0.95 0.94 0.41 0.40 0.40
z=0.9 0.86 0.86 0.87 0.35 0.35 0.33

When evaluated from an AL perspective, we can see that the Budget Entropy
method was the best performing of the three AL sampling strategies. Although
it had the lowest accuracy of all methods, its difference was still minor while
resulting in a large reduction in the number of instances queried, as can be seen
in Fig. 4. Regardless of the best AL strategy, all of them were very close to the
traditional supervised method in accuracy, showing that even though less data

11

was used to train the models, the high informativeness of the queries performed

by AL allowed the algorithms to reach very competitive performances.

Methods Best Budget Entropy -~ Budget Entropy ~+- Entropy

1.00 -

Relative Accuracy
2
3

0.25

Relative Query Request
o
o
3

0.00
All Samples 0.1

0.2
uncertainty threshold (z)

Fig. 4. Performance of AL methods based on relative accuracy and relative query
reductions over different z values.

Best Budget Entropy obtained the lowest reduction in number of queries.
Since it does not have the z hyperparameter, its results remain stable across all
experiments. When observing Relative Query Request, Entropy obtained inter-
mediate reductions as Table 3 shows. An impressive reduction was obtained by
Budget Entropy using z = 0.9. It also achieved a relative accuracy of 0.80 using
just 6% of available samples. This was the best trade-off between accuracy and
number of query request.

Table 3. Table of Relative Accuracy and Relative Query request across all uncertainty
threshold (z) and AL methods, Best Budge Entropy (BBH), Budge Entropy (BH) and
Entropy.

z Relative Accuracy | Relative Query Request
Value BBH |BH H BBH |BH (H

All samples | 1.00 |1.00|1.00 |1.00 |1.00|1.00
z=0.1 0.96 |0.96|0.96 |0.70 10.140.63
z=10.2 0.96 [0.94|/0.95 |0.70 |0.120.57
z=05 0.96 |0.92{/0.92 |0.70 10.100.40
z=0.9 0.96 |0.80|0.81 |0.70 1 0.060.26

Observing the query rates across the relative accuracy intervals of 0.70, 0.75,
0.80, 0.85, 0.90, 0.95 and 1.0 in Fig.5, it is possible to observe that Budget

12

Entropy kept the number of queries quite reduced for several accuracy inter-
vals. The adapted approach, Best Budget Entropy, achieved more stability in
comparison to Entropy in the highly accurate intervals (0.95 and 1.00).

Methods B3 Best Budget Entropy B3 Budget Entropy B3 Entropy

1.00

o
3
a

:
—_— D — .
= = li O .
. L3
0.00 == =
0.70 0.75

0.80 0.85 0.90 0.95 1.00
Accuracy Interval

Queries rate
o
@
o

o
N
@

Fig. 5. Percent reduction of queries across relative accuracy interval comparing the AL
methods.

Beyond the reduction of label demand, it is important to note that some
accuracies obtained with AL methods surpassed the incremental decision tree
results with all samples. Precisely, 81 cases distributed among algorithms,
methods and some streams (CTU13 — 7, LED24 — 10%, Airlines, Usenet,
LED24—-20%, CTU13—12,CTU13—-13, CTU13—-2, CTU13—-9, CTU13 -6,
RandomRBF — 1M and SEA). Particularly, the best improvement was about
0.8% using 99.8% of samples over CTU13 —13 with a SVFDT-I. The best trade-
off was achieved over RandomRBF — 1M, in which 40.5% of samples were able
to induce a model with an improvement of 0.3% over the accuracy of the model
created wit all samples. The method used was Entropy. These results indicate
that future work investigating alternative strategies to choose the training sam-
ples focusing on predictive performance improvements can be viable.

5 Conclusion and Future Work

We evaluated the use of three different AL methods (Best Budget Entropy, Bud-
get Entropy and Entropy) in a streaming scenario for three variations of the
Hoeffding Tree (VFDT, SVFDT-I and SVFDT-II). We observed that although
regular training has higher accuracy than active learning strategies, the differ-
ence was very low in face of the amount of labelled data needed to train the
model. SVEDTs took more advantage with the use of AL. Furthermore, in some
cases SVFDT-I coupled with AL was able to improve the results in compari-
son to the use of all labelled samples. Grounded on the results, it is possible to
affirm the Budget Entropy is the best Active Learning method to be embedded in
the evaluated incremental trees. This method reached the best relation between

13

high accuracy and reduction of query requests, since using just 14% of the total
labelled samples result in only 4% of accuracy reduction.

In future work, we will explore the use of AL methods embedded in the

studied incremental trees being used as base-learners into ensembles. This study
will support the identification of the cost of concept drift in terms of queries
required by an oracle.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alabdulrahman, R., Viktor, H., Paquet, E.: An active learning approach for
ensemble-based data stream mining. In: International Conference on Knowledge
Discovery and Information Retrieval, vol. 2, pp. 275-282. SCITEPRESS (2016)
Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319-342 (1988)
Atlas, L.E., Cohn, D.A., Ladner, R.E.: Training connectionist networks with
queries and selective sampling. In: Advances in Neural Information Processing
Systems, pp. 566-573 (1990)

. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.

J. Mach. Learn. Res. 11, 1601-1604 (2010)

Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning.
Mach. Learn. 15(2), 201-221 (1994)

da Costa, V.G.T., de Leon Ferreira de Carvalho, A.C.P., Junior, S.B.: Strict very
fast decision tree: a memory conservative algorithm for data stream mining. Pattern
Recognit. Lett. 116, 22-28 (2018)

da Costa, V.G.T., et al.: Online local boosting: improving performance in online
decision trees. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS),
pp. 132-137. IEEE (2019)

Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks.
In: AAAL, vol. 5, pp. 746-751 (2005)

Dagan, I., Engelson, S.P.: Committee-based sampling for training probabilistic
classifiers. In: Machine Learning Proceedings 1995, pp. 150-157. Elsevier (1995)
De Rosa, R., Cesa-Bianchi, N.: Confidence decision trees via online and active
learning for streaming data. J. Artif. Intell. Res. 60, 1031-1055 (2017)
Domingos, P., Hulten, G.: Mining high-speed data streams. In: Kdd, vol. 2, p. 4
(2000)

Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

Fan, W.: Systematic data selection to mine concept-drifting data streams. In: Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 128-137 (2004)

Fu, Y., Zhu, X., Li, B.: A survey on instance selection for active learning. Knowl.
Inf. Syst. 35(2), 249283 (2013)

Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st
edn. (2010)

Gama, J., Kosina, P.: Recurrent concepts in data streams classification. Knowl.
Inf. Syst. 40(3), 489-507 (2013). https://doi.org/10.1007/s10115-013-0654-6
Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet
detection methods. Comput. Secur. 45, 100-123 (2014)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1),
10-18 (2009)

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/s10115-013-0654-6

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Korycki, L., Krawczyk, B.: Combining active learning and self-labeling for data
stream mining. In: Kurzynski, M., Wozniak, M., Burduk, R. (eds.) CORES 2017.
AISC, vol. 578, pp. 481-490. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-59162-9_50

Krawczyk, B., Cano, A.: Adaptive ensemble active learning for drifting data stream
mining. In: International Joint Conference on Artificial Intelligence (Macao), pp.
2763-2771 (2019)

Krawczyk, B., Pfahringer, B., Wozniak, M.: Combining active learning with con-
cept drift detection for data stream mining. In: 2018 IEEE International Conference
on Big Data (Big Data), pp. 2239-2244. IEEE (2018)

Krempl, G., et al.: Open challenges for data stream mining research. SIGKDD
Explor. Newsl. 16(1), 1-10 (2014). https://doi.org/10.1145/2674026.2674028
Lang, K., Baum, E.: Query learning can work poorly when a human oracle is used.
In: IEEE International Joint Conference on Neural Networks (1992)

Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
SIGIR 1994. pp. 3—-12. Springer (1994). https://doi.org/10.1007/978-1-4471-2099-
5.1

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)
Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648. University of Wisconsin-Madison (2009)

Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, p. 287-294. COLT
1992. Association for Computing Machinery, New York (1992). https://doi.org/10.
1145/130385.130417

Shan, J., Zhang, H., Liu, W., Liu, Q.: Online active learning ensemble framework
for drifted data streams. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 486-498
(2018)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379-423 (1948)

Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale clas-
sification. In: Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 377-382. KDD 2001. Association
for Computing Machinery, New York (2001)

Triguero, 1., Garcia, S., Herrera, F.: Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42(2), 245-
284 (2013). https://doi.org/10.1007/s10115-013-0706-y

Zhu, X.J.: Semi-supervised Learning Literature Survey. University of Wisconsin-
Madison Department of Computer Sciences, Technical report (2005)

Zliobaite, 1., Bifet, A., Holmes, G., Pfahringer, B.: Moa concept drift active learning
strategies for streaming data. J. Mach. Learn. Res. - Proc. Track 17, 48-55 (2011)
Zliobaite, 1., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting
streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 27-39 (2013)

15

https://doi.org/10.1007/978-3-319-59162-9_50
https://doi.org/10.1007/978-3-319-59162-9_50
https://doi.org/10.1145/2674026.2674028
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1007/s10115-013-0706-y

	Active Learning Embedded in Incremental Decision Trees
	1 Introduction
	2 Active Learning and Stream Mining
	2.1 Active Learning Strategies
	2.2 Incremental Decision Trees

	3 Experimental Setup
	4 Results and Discussions
	5 Conclusion and Future Work
	References

