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Abstract. Object detection is an important and fundamental task in
computer vision. Recently, the emergence of deep neural network has
made considerable progress in object detection. Deep neural network
object detectors can be grouped in two broad categories: the two-stage
detector and the one-stage detector. One-stage detectors are faster than
two-stage detectors. However, they suffer from a severe foreground-backg-
round class imbalance during training that causes a low accuracy per-
formance. RetinaNet is a one-stage detector with a novel loss function
named Focal Loss which can reduce the class imbalance effect. Thereby
RetinaNet outperforms all the two-stage and one-stage detectors in term
of accuracy. The main idea of focal loss is to add a modulating factor
to rectify the cross-entropy loss, which down-weights the loss of easy ex-
amples during training and thus focuses on the hard examples. However,
cross-entropy loss only focuses on the loss of the ground-truth classes
and thus it can’t gain the loss feedback from the false classes. Thereby
cross-entropy loss does not achieve the best convergence. In this paper,
we proposed a new loss function named Dual Cross-Entropy Focal Loss,
which improves on the focal loss. Dual cross-entropy focal loss adds a
modulating factor to rectify the dual cross-entropy loss towards focus-
ing on the hard samples. Dual cross-entropy loss is an improved vari-
ant of cross-entropy loss, which gains the loss feedback from both the
ground-truth classes and the false classes. We changed the loss function
of RetinaNet from focal loss to our dual cross-entropy focal loss and per-
formed some experiments on a small vehicle dataset. The experimental
results show that our new loss function improves the vehicle detection
performance.
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1 Introduction

Object detection is one of the most fundamental tasks in computer vision, which
has received considerable attention for several decades. The emergence of deep
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convolutional neural networks, including CNNs [1–3], has provided a significant
improvement in object detection [4–6]. The CNN-based object detection methods
are mainly divided into two categories: the two-stage method and the one-stage
method.

The R-CNN-like two-stage detectors generate the object candidate regions in
the first stage and then classify each candidate region as one of the foreground
classes or as background in the second stage. Generation of the object candidate
regions in the first stage greatly improves the detection accuracy; however it
reduces the detection speed. The representatives of the two-stage method are
the region proposal based detectors, such as RCNN [7], Fast RCNN [8], Faster
RCNN [9] and RFCN [10].

The one-stage detectors skip the process of generating the oject candidate
regions. In order to cover the space of possible image boxes, the one-stage detec-
tors use a dense set of fixed sampling grids, such as multiple ‘anchors’ [9], at each
spatial position, and thus they must process a much larger set of regions sampled
across an image. As compared to the two-stage detectors, the one-stage detectors
improve the detection speed but reduce the detection accuracy. The represen-
tatives of the one-stage method are YOLO [11], YOLO9000 [12], YOLOv3 [13],
SSD [14] and DSSD [15].

In the two-stage method, the positive and negative samples are relatively
balanced (e.g., 1:3). Because in the first stage, a large set (e.g., 1-2k) of object
candidate regions are selected and most of the background regions (the nega-
tive samples) are discarded. In the one-stage method, the positive and negative
samples are extremely unbalanced (e.g., 1:1000). Because a dense sampling of
regions (e.g., 100k) which cover various locations, scales, and aspect ratios need
to be classified, and the majority of the regions are background regions (the neg-
ative samples). Each sampled region can be treated as an training sample. In the
one-stage detector, when the convolutional neural network trains the large set
of sampled regions, the majority of the loss function consists of the easily clas-
sified negatives (background exam-ples) and they dominate the gradient. Thus,
extreme foreground-background class imbalance during training is one of the
main reasons that causes the two-stage detectors perform more accurate than
one-stage detectors.

RetinaNet[16] is a one-stage detector that has a superior performance for
dense sampling of object locations in an input image. The network structure of
RetinaNet draws on a variety of recent ideas, such as the concept of anchor in
RPN [9], the feature pyramids in SSD [14] and FPN [17]. However, Tsung-Yi
Lin et al. [16] emphasized, “We emphasize that our simple detector achieves top
results not based on innovations in network design but due to our novel loss.”
Tsung-Yi Lin et al. [16] proposed a new loss function named Focal Loss to address
the extreme class imbalance. They greatly reduced the weight of easy negatives
in the loss function by adding a modulating factor to the standard cross-entropy
loss. As a one-stage detector, “RetinaNet is able to match the speed of previous
one-stage detectors while surpas-sing the accuracy of all existing state-of-the-art
two-stage detectors”[16].
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Focal loss is based on the cross-entropy loss. However, cross-entropy loss only
focuses on the loss of the ground-truth classes and thus it can’t gain the loss feed-
back from the false classes. Xiaoxu Li et al. [20] proposed an improved variant of
cross-entropy loss named Dual Cross-Entropy Loss to gain the loss feedback from
both the ground-truth classes and the false classes. In this paper, we combined
the idea of focal loss[16] to focus more on hard examples with dual cross-entropy
loss and proposed a new loss function named Dual Cross-Entropy Focal Loss.
We substituted the loss of RetinaNet[16] with our proposed dual cross-entropy
focal loss and applied it to a small vehicle dataset. The experimental results
show that our new loss function improves the vehicle detection performance.

2 Related Work

In this section, we will introduce cross-entropy loss and focal loss first. We will
analyse why focal loss can reduce the class imbalance effect. Then we will point
out the shortage of the cross-entropy loss and introduce the dual cross-entropy
loss. We will analyse the advantages of the dual cross-entropy loss compared
with the cross-entropy loss. Finally, we will integrate the dual cross-entropy loss
and focal loss to create a new loss function named Dual Cross-Entropy Focal
Loss.

2.1 Cross-Entropy Loss and Focal Loss

Suppose that D = {(x1,Y1), ..., (xk,Yk), ..., (xM ,YM )} is a training dataset of
M samples. We assume that all the samples have C categories: background and
C−1 types of objects. Yk is the ground-truth label of the kth (k ∈ {1, 2, ...,M})
sample xk and Yk is a C-dimensional one-hot vector. Only one component
in Yk is 1, and the other components are equal to zero. yk

(i) denotes the
ith (i ∈ {1, 2, ..., C}) component of the vector Yk, then yk

(i) is defined as fol-
lows:

y
(i)
k =

{
1 if xk belongs to the ith (i ∈ {1, 2, ..., C}) class
0 if xk does not belong to the ith (i ∈ {1, 2, ..., C}) class

(1)

Pk is the probability distribution of the kth (k ∈ {1, 2, ...,M}) sample xk pre-

dicted by the detector and Pk is also a C-dimensional vector. p
(i)
k denotes the

ith (i ∈ {1, 2, ..., C}) component of the vector Pk. p
(i)
k is the probability that the

detector predicts the sample xk belonging to the ith (i ∈ {1, 2, ..., C}) class.

Because of the softmax function, we have ∀k (k ∈ {1, 2, ...,M}),
C∑
i=1

p
(i)
k = 1.

For the sake of brevity, we use tk (tk ∈ {1, 2, ..., C}) to represent the ground-
truth class of the kth (k ∈ {1, 2, ...,M}) sample xk, and then the cross-entropy
loss of the sample xk is defined as follows:

CE (xk,Yk) = −YT
k · log (Pk) = − log

(
p
(tk)
k

)
(2)
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The total cross-entropy loss of M samples is defined as follows:

LCE =

M∑
k=1

CE (xk,Yk) = −
M∑
k=1

(
YT
k · log (Pk)

)
= −

M∑
k=1

log
(
pk

(tk)
)

(3)

According to equation (3), the cross-entropy loss of each training sample is accu-

mulated by an equal weight. It means that, the easy examples (p
(tk)
k � 0.5) and

the hard examples have the same weight. Even easy examples have a loss with
non-trivial magnitude. Most of the training examples of the one-stage detectors
are easy negatives. Tsung-Yi Lin [16] said, “When summed over a large num-
ber of easy examples, these small loss values can overwhelm the rare class.”
Therefore, easy negatives generally lead to degenerate models.

Focal loss [16] multiplies the cross-entropy loss of the sample xk by a mod-

ulating factor
(

1−p(tk)k

)γ
. γ > 0 is a constant variable that is suggested to be

γ=2 in [16]. The focal loss of the sample xk is defined as follows:

FL (xk,Yk) =
(

1−p(tk)k

)γ
· CE (xk,Yk)

=−
(

1−p(tk)k

)γ
·YT

k · log (Pk)

=−
(

1−p(tk)k

)γ
· log

(
p
(tk)
k

) (4)

The total focal loss of M samples is defined as follows:

LFL =

M∑
k=1

FL (xk,Yk)

=−
M∑
k=1

((
1 - p

(tk)
k

)γ
·YT

k · log (Pk)
)

=−
M∑
k=1

(
1 - p

(tk)
k

)γ
· log

(
pk

(tk)
)

(5)

γ > 0. When γ = 0, the focal loss is equivalent to the cross-entropy loss. When an
example is easy to classify and pk

(tk) is near 1, the modulating factor
(
1 - pk

(tk)
)γ

is near 0 and the loss is down-weighted. When an example is hard to classify
and pk

(tk) is small, the modulating factor
(
1 - pk

(tk)
)γ

is near 1 and the loss
is unaffected. Indeed, focal loss significantly down-weights the loss of the easy
examples, and thus focuses on the hard examples. Therefore, focal loss can reduce
the class imbalance effect.

2.2 Dual Cross-Entropy Loss

More recently, dual cross-entropy loss [20] is proposed to apply for the vehicle
image classification, in which the accuracy of the model improves. .



Application of an Improved Focal Loss in Vehicle Detection 5

During training, the cross-entropy loss (equation (2)) only focuses on increas-
ing the probability that a sample is classified to its corresponding ground-truth
class. Although due to the effect of the softmax function, the probability that a
sample is classified to a class other than its ground-truth class correspondingly
reduces. The cross-entropy loss does not achieve the best convergence because
it can’t gain the loss feedback from the false classes.

The dual cross-entropy loss not only increases the probability that a sample
is correctly classified but also decreases the probability that a sample is classified
to a class other than its ground-truth class. The dual cross-entropy loss of the
sample xk is defined as follows:

DCE (xk,Yk) =CE (xk,Yk) + β ·Reg (xk,Yk)

=−YT
k · log (Pk) + β ·

(
1−YT

k

)
· log (α+ Pk)

=− log
(
p
(tk)
k

)
+ β ·

C∑
i = 1
i 6= tk

log
(
α+ p

(i)
k

) (6)

The total dual cross-entropy loss loss of M samples is defined as follows:

LDCE =LCE + β · LR

=

M∑
k=1

CE (xk,Yk) + β ·
M∑
k=1

Reg (xk,Yk)

=−
M∑
k=1

(
YT
k · log (Pk)

)
+ β ·

M∑
k=1

((
1−YT

k

)
· log (α+ Pk)

)
=−

M∑
k=1

(
log
(
p
(tk)
k

))
+ β ·

M∑
k=1

C∑
i = 1
i 6= tk

log
(
α+ p

(i)
k

)
(7)

LCE is the cross-entropy loss in equation (3) and LR is a regularization term.
α > 0, β > 0. When β = 0, the dual cross-entropy loss has a same value as
the cross-entropy loss. We set the α = 1 and β = 10 as suggested in [20].
While training, LCE is increasing the probability that a sample is correctly

classified(p
(tk)
k ), and LR is decreasing the probability that a sample is classified

to another class (rather than its ground-truth).
Xiaoxu Li et al. [20] summarized the advantages of the dual cross-entropy

loss compared with the cross-entropy loss as follows:
First, dual cross-entropy loss can accelerate the optimization of the neural

network.
Second, dual cross-entropy loss works better on small-sample datasets and

per-forms well on large-sample datasets.
Third, dual cross-entropy loss can ensure the network or model has a more

stable performance compared to the cross-entropy loss.
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2.3 Dual Cross-Entropy Focal Los

We take the idea of focusing more on hard examples from focal loss and add
a modulating factor to the dual cross-entropy loss to down-weights the loss of
the easy examples. We named the new loss Dual Cross-Entropy Focal Loss. We
define the dual cross-entropy focal loss of the sample xk as follows:

DCFL (xk,Yk) =−
(

1 - p
(tk)
k

)γ1
· log

(
p
(tk)
k

)
+β ·

C∑
i = 1
i 6= tk

((
p
(i)
k

)γ2
· log

(
α+ p

(i)
k

))
(8)

γ1 > 0, γ2 > 0. When γ1 = γ2 = 0, the dual cross-entropy focal loss is the same
as the dual cross-entropy loss in equation (6). The dual cross-entropy focal loss

consists of two parts. The first part is −
(

1 - p
(tk)
k

)γ1
· log

(
p
(tk)
k

)
, which is the

same as the focal loss in equation (4). This part increases the probability that a

sample is assigned to its ground-truth class (p
(tk)
k ), and focuses on the hard ex-

amples whose p
(tk)
k is small. The second part is

(
p
(i)
k

)γ2
·log

(
α+ p

(i)
k

)
, which de-

creases the probability that a sample is classified to a class other than its ground-
truth class. The second part also focuses on the hard examples. Because some of
the probabilities that a hard example is classified to a class other than its ground-

truth class are large. For example, for a hard example, if p
(i)
k (i ∈ {1, 2, ..., C} ,

i 6= tk) is large, the loss can focus on decreasing p
(i)
k . Dual cross-entropy focal

loss gains the loss feedback from both the ground-truth classes and the false
classes through the two parts and focuses on the hard examples.

The total dual cross-entropy focal loss of M samples is defined as follows:

LDCFL =

M∑
k=1

DCFL (xk,Yk)

=−
M∑
k=1

((
1 - p

(tk)
k

)γ1
· log

(
p
(tk)
k

))
+β ·

M∑
k=1

C∑
i = 1
i 6= tk

((
p
(i)
k

)γ2
· log

(
α+ p

(i)
k

)) (9)

3 Experimental Results

3.1 UA-DETRAC Dataset

We verified the dual cross-entropy focal loss on an open vehicle dataset named
UA-DETRAC. UA-DETRAC is a real-world multi-object detection dataset that
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consists of 10 hours of videos. The videos are captured at 24 different locations
in Beijing and Tianjin, China. The resolution of each picture is 960×540 pixels.
There are more than 140 thousand frames in the UA-DETRAC dataset, and
8250 vehicles have been manually annotated, with a total of 1.21 million labeled
bounding boxes of objects. In Fig. 1, we have shown some examples of the
dataset. Our GPU resources are limited, to save experimental time, we only
selected 2000 pictures from UA-DETRAC to create our dataset. We divided the
obtained dataset into three parts. The training set consists of 1200 pictures. The
validation set consists of 400 pictures. The test set consists of 400 pictures.

Fig. 1. Examples in the dataset

3.2 Comparison of Focal Loss and Dual Cross-Entropy Focal Loss
on Our Dataset

For the experiments and performance evaluation, we trained the same Reti-
naNet[16] model by minimizing the focal loss or our dual cross-entropy focal loss
on the same training set for 100 epochs. In our work, we set focal loss (equation
(5)) as γ = 2 as suggested in [16]. Dual cross-entropy focal loss (equation (8))
was set to γ1 = γ2 = 2, α = 1, β = 10 as suggested in [20]. The cited reference
[16] provides the structural details and description of RetinaNet. We saved the
trained models after each epoch, and finally, we tested each saved model on the
same test set. The mAP50 index (IoU = 0.5) on the same test set for the saved
models trained by minimizing two loss functions after each epoch is shown in
Fig. 2.

We trained the same RetinaNet model by minimizing the focal loss or our dual
cross-entropy focal loss on the same training set 10 times respectively. In each
training epoch, the performance of the model was monitored on the validation
dataset, and the model that had the best performance was saved. Finally, we
tested all the saved models that trained by minimizing two loss functions on the
same test set and calculated the mean and standard deviation of the 10 mAP50
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Fig. 2. Curves of the mAP50 index obtained by the RetinaNet network trained by
minimizing the focal loss and our dual cross-entropy focal loss on the same dataset

indexes. As shown in Table 1, dual cross-entropy focal loss improves the mAP50
index by 1.6% and has a smaller standard deviation.

Table 1. The means and standard deviations of the 10 mAP50 indexes obtained by
the RetinaNet network trained by minimizing the focal loss and our loss on the same
dataset

Loss Function Mean Std.

Focal Loss 0.471 0.018

Dual Cross-Entropy Focal Loss 0.487 0.013

3.3 Comparison to Traditional Object Detecters on Our Dataset

We evaluated three different one-stage detectors on the bounding box detec-
tion task on our dataset. SSD[14] and RetinaNet[16] used depth 101 ResNet[4]
as their backbone network. YOLOv3[13] used the 53 depth Darknet [13] as its
backbone network. J. Redmon et al. [13] said that Darknet-53 has equal accu-
racy to ResNet-101. The ResNet-101 and Darknet-53 were pre-trained on the
ImageNet dataset. In order to match the default input image size of the detec-
tors, we resized the image. The input images for SSD were resized into 512×512
dimension. The input images for YOLOv3 were resized into 608×608 dimen-
sion. The shorter side of the input images for RetinaNet was resized into 608
dimension. For the data augmentation, horizontal flipping was only used. The
corresponding cited references provide the structural details and description of
the three detectors.
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We trained SSD and YOLOv3 on the same training set for 100 epochs. For
SSD and YOLOv3, we monitored the performance of its network on the same
validation set. For SSD and YOLOv3, the model which had the best performance
was saved and then used to predict the test data. We used the performance of
RetinaNet in Table 1 and we get Table 2.

The UA-DETRAC dataset mainly consists of medium and small objects.
SSD[14] performs poor on the small objects. This is mainly because the small
objects may not have even information at the very top layers. YOLOv3[13]
performs much better than SSD, especially on the medium and small objects.
As shown in Table 2, RetinaNet trained by minimizing the focal loss achieves
a 1.5 point AP gap (47.1 vs. 45.6) with YOLOv3 and achieves a 9.8 point AP
gap (47.1 vs. 37.3) with SSD. RetinaNet trained by minimizing our dual cross-
entropy focal loss achieves a 1.6 point AP gap (48.7 vs. 47.1) further.

Table 2. Comparison of traditional object detection methods on our dataset

methods backbone mAP50

SSD[14] ResNet101-SSD 0.373

YOLOv3[13] Darknet-53 0.456

RetinaNet[16] + Focal Loss ResNet101-FPN 0.471

RetinaNet[16] + Dual Cross-Entropy Focal Loss ResNet101-FPN 0.487

4 Conclusions

In this paper, we integrated the dual cross-entropy loss and focal loss to create
a new loss function named Dual Cross-Entropy Focal Loss. As compared to the
focal loss, our proposed loss considers loss on both both the ground-truth classes
and the false classes by adding a regularization term which places a constraint
on the probability that the example belongs to a false class. Fig. 2 shows that
our new loss can accelerate the convergence of the network and improve the
detection accuracy. Table 2 shows that RetinaNet[16] trained by minimizing our
new loss achieves best accuracy on our dataset compared to the baselines.
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