Skip to main content

Deep Learning with Data Augmentation for Fruit Counting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12415))

Abstract

Counting the number of fruits in an image is important for orchard management, but is complex due to different challenging problems such as overlapping fruits and the difficulty to create large labeled datasets. In this paper, we propose the use of a data-augmentation technique that creates novel images by adding a number of manually cropped fruits to original images. This helps to increase the size of a dataset with new images containing more fruits and guarantees correct label information. Furthermore, two different approaches for fruit counting are compared: a holistic regression-based approach, and a detection-based approach. The regression-based approach has the advantage that it only needs as target value the number of fruits in an image compared to the detection-based approach where bounding boxes need to be specified. We combine both approaches with different deep convolutional neural network architectures and object-detection methods. We also introduce a new dataset of 1500 images named the Five-Tropical-Fruits dataset and perform experiments to evaluate the usefulness of augmenting the dataset for the different fruit-counting approaches. The results show that the regression-based approaches profit a lot from the data-augmentation method, whereas the detection-based approaches are not aided by data augmentation. Although one detection-based approach finally still works best, this comes with the cost of much more labeling effort.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The dataset has been made publicly available and can be accessed at https://www.ai.rug.nl/~p.pawara/.

References

  1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks (2017). arXiv preprint arXiv:1711.04340

  2. Arteta, C., Lempitsky, V., Zisserman, A.: Counting in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 483–498. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_30

    Chapter  Google Scholar 

  3. Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., Moussaoui, A.: Deep learning for plant diseases: detection and saliency map visualisation. In: Zhou, J., Chen, F. (eds.) Human and Machine Learning. HIS, pp. 93–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90403-0_6

    Chapter  Google Scholar 

  4. Bulacu, M., Brink, A., van der Zant, T., Schomaker, L.: Recognition of handwritten numerical fields in a large single-writer historical collection. In: 10th International Conference on Document Analysis and Recognition, pp. 808–812. IEEE (2009)

    Google Scholar 

  5. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: The IEEE International Conference on Computer Vision (ICCV), pp. 1301–1310 (2017)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Häni, N., Roy, P., Isler, V.: A comparative study of fruit detection and counting methods for yield mapping in apple orchards. J. Field Rob. 37, 263–282 (2019)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  12. Koirala, A., Walsh, K., Wang, Z., McCarthy, C.: Deep learning for real-time fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’. Precis. Agric. 20, 1–29 (2019)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  14. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems, pp. 1324–1332 (2010)

    Google Scholar 

  15. Lin, T.Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Liu, X., et al.: Robust fruit counting: combining deep learning, tracking, and structure from motion. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1045–1052. IEEE (2018)

    Google Scholar 

  18. Oñoro-Rubio, D., López-Sastre, R.J.: Towards perspective-free object counting with deep learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 615–629. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_38

    Chapter  Google Scholar 

  19. Paul Cohen, J., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.: Countception: counting by fully convolutional redundant counting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 18–26 (2017)

    Google Scholar 

  20. Pawara, P., Okafor, E., Schomaker, L., Wiering, M.: Data augmentation for plant classification. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 615–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_52

    Chapter  Google Scholar 

  21. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning (2017). arXiv preprint arXiv:1712.04621

  22. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17(4), 905 (2017)

    Article  Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  24. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  25. Stahl, T., Pintea, S.L., van Gemert, J.C.: Divide and count: generic object counting by image divisions. IEEE Trans. Image Process. 28(2), 1035–1044 (2018)

    Article  MathSciNet  Google Scholar 

  26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  27. Taylor, L., Nitschke, G.: Improving deep learning using generic data augmentation (2017). arXiv preprint arXiv:1708.06020

  28. Tremblay, J., et al.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 969–977 (2018)

    Google Scholar 

  29. Tzutalin: LabelImg homepage. https://github.com/tzutalin/labelImg

  30. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 833–841 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornntiwa Pawara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawara, P., Boshchenko, A., Schomaker, L.R.B., Wiering, M.A. (2020). Deep Learning with Data Augmentation for Fruit Counting. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics