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Abstract. Currently, approximately 4 billion people are infected by in-
testinal parasites worldwide. Diseases caused by such infections consti-
tute a public health problem in most tropical countries, leading to phys-
ical and mental disorders, and even death to children and immunodefi-
cient individuals. Although subjected to high error rates, human visual
inspection is still in charge of the vast majority of clinical diagnoses. In
the past years, some works addressed intelligent computer-aided intesti-
nal parasites classification, but they usually suffer from misclassification
due to similarities between parasites and fecal impurities. In this paper,
we introduce Deep Belief Networks to the context of automatic intesti-
nal parasites classification. Experiments conducted over three datasets
composed of eggs, larvae, and protozoa provided promising results, even
considering unbalanced classes and also fecal impurities.
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1 Introduction

Estimates reveal that around 4 billion people in the world are infected with
some intestinal parasite [21]. The human intestinal parasitism is a public health
problem, especially in tropical countries [9], in which such infections can lead
children and immunodeficient adults to death. The detection and diagnosis of
human intestinal parasitosis depend on the visual analysis of optical microscopy
images obtained from fecal samples mostly. However, the manual analysis of
those images is time-consuming and error-prone. In order to circumvent this
problem, Suzuki et al. [19] proposed a fully automated enteroparasitosis diagnosis
system via image analysis, which addressed the 15 most common species of
protozoa and helminths in Brazil. The proposed approach is composed of three
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main steps: (i) image segmentation, (ii) object delineation, and its further (iii)
classification.

Previous works have also investigated protozoa and helminth parasites classi-
fication. Suzuki et al. [20], for instance, introduced the Optimum Path Forest [11,
10] classifier for such a task, with results that outperformed Support Vector Ma-
chines and Artificial Neural Networks. Later on, Peixinho et al. [14] explored
Convolutional Neural Networks (CNNs) in this context. Further, Peixinho et
al. [13] proposed generating synthetic samples to increase the number of images
for under-represented classes by adding points onto a 2D projection space. Fur-
thermore, Benato et al. [1] investigated an approach to cope with the lack of
supervised data by interactively propagating labels to reduce the user effort in
data annotation. Finally, Castelo et al. [3] used bag of visual words to extract key
points from superpixel-segmented images and further build a visual dictionary
to automatic classify intestinal parasites.

Apart from the techniques mentioned earlier, Restricted Boltzmann Machines
(RBMs) [17] obtained notorious attention due to their promising results in a wide
variety of tasks such as data reconstruction [12], exudate identification in retinal
images [7], and collaborative filtering [16], to cite a few. Moreover, RBMs can
be used as the building block for more complex and deep models such as Deep
Belief Networks (DBNs) [6] and Deep Boltzmann Machines (DBMs) [15].

However, as far as we are concerned, no work has employed RBM-based
models in the task of intestinal parasite classification to date. Therefore, the
main contributions of this work are threefold: (i) to propose an effective method
for parasite classification using RBMs and DBNs; (ii) to evaluate the ability of
Restricted Boltzmann Machines ability for data augmentation; and (iii) to foster
the scientific literature concerning both RBM-based applications and intestinal
parasites identification.

The remainder of this paper is organized as follows: Section 2 introduces
the theoretical background concerning RBMs and DBNs, while Sections 3 and 4
present the methodology and the experimental results, respectively. Finally, Sec-
tion 5 states conclusions and future works.

2 Theoretical Background

In this section, we provide a brief description of the main concepts regarding
RBM and DBN formulations, as well as their discriminative variant to deal with
classification problems.

2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines stand for energy-based neural networks that
can learn the probability distribution over a set of input vectors. Such models
are named after the Boltzmann distribution, a measurement that uses the sys-
tem’s energy to obtain the probability of a given state. Energy-based models
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are inspired by physics since they assign a scalar energy value for each vari-
able configuration, thus learning by adjusting their parameters to minimize the
energy of the system. Moreover, they are modeled as a bipartite graph, i.e.,
there are no connections between units from the same layer. Such a technique
assumes binary-valued nodes, although there are extensions to real- and even
complex-valued inputs [18, 8].

Given an initial configuration (v,h), the energy of the system can be com-
puted as follows:

E(v,h) = −
m∑
i=1

bivi −
n∑

j=1

cjhj −
m∑
i=1

n∑
j=1

Wijvihj , (1)

where v ∈ <m and h ∈ <n stand for the visible and hidden layers, respectively,
and b ∈ <m and c ∈ <n denote their bias vectors. Additionally, Wm×n corre-
sponds to the weight matrix concerning the connections between layers v and
h.

The learning procedure aims at finding W , a, and b in such a way Equa-
tion 1 is minimized. However, calculating the joint probability of the model is
intractable since it requires computing every possible initial configuration. More-
over, one can estimate the conditional probabilities using alternated iterations
over a Monte Carlo Markov Chain (MCMC) approach, where the probabilities
of both input and hidden units can be computed as follows:

p(hj = 1|v) = σ

(
cj +

m∑
i=1

Wijvi

)
, (2)

and

p(vi = 1|h) = σ

bi +

n∑
j=1

Wijhj

 , (3)

where σ stands for the logistic-sigmoid function. Since the visible and hidden
units are conditionally independent, one can train the network using the MCMC
algorithm with Gibbs sampling through Contrastive Divergence (CD) [5].

2.2 Deep Belief Networks

Restricted Boltzmann Machines can also be employed to compose more complex
models. They are commonly used as building blocks to generate the so-called
Deep Belief Networks [6], which are composed of a visible and a set of L hidden
layers. In this model, each layer is connected to the next through a weight matrix
W(l), l ∈ [1, L]. In short, DBNs consider each set of two subsequent layers as
an RBM trained in a greedy fashion, where the hidden layer of the bottommost
RBM feeds the next RBM’s visible layer. For classification purposes, a Softmax
layer is appended to the model. Afterwards, the model is fine-tuned using the
backpropagation algorithm, as depicted in Figure 1. Notice that h(l) stand for
the l-th hidden layer.
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Fig. 1. DBN architecture with two hidden layers for classification purposes.

3 Methodology

In this section, we introduce the dataset employed in this work, as well as the
technical details concerning the experimental setup.

3.1 Dataset

The experiments consider datasets from human intestinal parasites divided into
three groups: (i) Helminth eggs (i.e., Eggs) with 12, 691 images, (ii) Helminth
larvae (i.e., Larvae) with 1, 598 images, and (iii) Protozoan cysts (i.e., Proto-
zoa) with 37, 372 images. Notice that all datasets contain fecal impurities, which
is a diverse class that looks alike to some parasites. Each dataset comprises the
following categories and their respective label in parenthesis:

– Helminth eggs: H.nana (1), H.diminuta (2), Ancilostomideo (3),
E.vermicularis (4), A.lumbricoides (5), T.trichiura (6), S.mansoni (7), Tae-
nia (8), and impurities (9).

– Helminth larvae: larvae (1) and impurities (2); and
– Protozoan cysts: E.coli (1), E.histolytica (2), E.nana (3), Giardia (4),

I.butschlii (5), B.hominis (6), and impurities (7).

These are the most common species of human intestinal parasites in Brazil,
and they are also responsible for public health problems in most tropical coun-
tries [19]. Notice that all datasets are unbalanced with considerably more impu-
rity samples. The objects of interest were first segmented from the background,
converted to grayscale, and further resized to 50× 50 pixels. Table 2(a) presents
the distribution of samples per class.

3.2 Data augmentation

In this paper, we proposed two different synthetic data generation approaches
to overcome the class imbalance problem: (i) an Autoencoder (AE) and (ii) an
additional RBM for image reconstruction purposes. In all cases, the models were
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trained with examples of the class to be oversampled only. Further, to allow
a fair comparison, both the RBM and the AE contain similar architectures.
Table 1 presents the hyperparameters employed while training the models for
data augmentation.

Model Hyper-parameter Search interval Best value

AE

η [10−5, 10−2] 10−3

pdrop [0, 0.4] 0.2
Hidden dim {250, 500, 2000} 500
Batch size {16, 32, 128} 32

RBM
η [10−5, 10−2] 10−4

Hidden dim {500, 2000} 500
Batch size {4, 8, 16} 8

Table 1. Hyper-parameter setting up.

Regarding the synthetic data generation, our policy is to oversample the
minority classes in which the sum of total samples generated, for all classes, does
not overpass approximately 50% of the majority class (impurities). Table 2(b)
presents the augmentation results.

(a) Original

Class
# samples

Eggs Larvae Protozoa

1 500 246 868
2 83 1,352 659
3 286 – 1,783
4 103 – 1,931
5 835 – 3,297
6 435 – 309
7 254 – 28,525
8 379 – –
9 9,816 – –

Total 12,691 1,598 37,372

(b) Augmented

Class
# samples

Eggs Larvae Protozoa

1 1,000 (500) 738 (492) 868
2 415 (332) 1,352 1,977 (1,318)
3 572 (286) – 1,783
4 412 (309) – 1,931
5 835 – 3,297
6 870 (435) – 1,236 (927)
7 2,508 (2,254) – 28,525
8 379 – –
9 9,816 – –

Total 14,807 (2,116) 2,090 (492) 39,619 (2,245)

Table 2. Class frequency regarding the (a) original and (b) augmented datasets. The
values in parenthesis stand for the number of samples generated artificially.

3.3 Experimental Setup

Three different models were considered in this paper: one RBM with 500 hidden
neurons and two DBNs, i.e., the first with two hidden layers (DBN-2) containing
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500 neurons each, and the other comprising three hidden layers (DBN-3) with
2, 000 neurons in the first two levels and 500 neurons in the uppermost layer3.
All models were trained for 100 epochs considering each RBM stack with a
learning rate η = 10−5 and mini-batches of 64 samples. Further, the networks
were fine-tuned for an additional 100 epochs with mini-batches of size 128.

3.4 Evaluation procedure

Since we have unbalanced datasets, the standard accuracy (ACC) may not be
suitable to evaluate the proposed models since it favors classifiers biased towards
the most common classes. To address such an issue, we considered the Balanced
Accuracy score (BAC) [2] implemented in sklearn4. Additionally, the Cohen’s
kappa coefficient [4] is employed to assess the degree of agreement between the
classifier and the ground truth labels. Such a value lies in the interval [−1, 1],
where the lower and upper boundaries represent a complete disagreement and an
agreement, respectively. Finally, we employed the Wilcoxon signed-rank test [22]
with significance of 5% to evaluate the statistical similarity among the best
results.

4 Experimental Results

In this section, we present the experimental results concerning automatic human
parasites classification.

4.1 Classification results

Table 3 presents the mean results, concerning the standard accuracy, the bal-
anced accuracy, and the Kappa value with respect to the Larvae dataset. Results
are presented over the RBM, DBN-2, and DBN-3 techniques using three distinct
configurations, i.e., the original dataset and its augmented versions using RBM
(Aug-RBM) and AE (Aug-AE). Moreover, the best ones regarding Wilcoxon test
are in bold.

The results confirm the robustness of the proposed approaches since all mod-
els with RBM Augmentor achieved more than 94% of BAC. One can highlight
the DBN-2 results using the Aug-RBM with 95% and 0.901 of mean accuracy and
Kappa values, respectively. Such results provide good shreds of evidence towards
the relevance of data augmentation with respect to the baseline, once Aug-RBM
supported an improvement of around 5.6% concerning the standard accuracy,
17.3% regarding BAC, and 38% considering the Kappa value. Although Aug-AE
provided some improvements, RBM figures as the most accurate approach for
such a task.

Table 4 presents the results regarding the Eggs dataset. In this scenario,
DBN-3 obtained the best results concerning the ACC and Kappa values, while

3 In case of acceptance, we shall provide the link to the source-code.
4 Available at https://scikit-learn.org.
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RBM DBN-2 DBN-3

Aug-RBM Aug-AE Baseline Aug-RBM Aug-AE Baseline Aug-RBM Aug-AE Baseline

ACC 94.03±0.30 77.03±1.85 90.14±0.14 95.05±0.34 90.66±0.87 90.53±0.23 94.85±0.33 92.15±0.65 89.61±1.26

BAC 94.07±0.28 69.71±2.95 80.19±0.38 95.09±0.33 90.63±0.75 81.24±0.41 94.87±0.34 91.40±0.79 80.99±2.29

Kappa 0.880±0.005 0.445±0.053 0.637±0.006 0.901±0.007 0.804±0.018 0.653±0.007 0.897±0.007 0.832±0.014 0.630±0.041

Table 3. Effectiveness over Larvae dataset using the proposed approaches.

the standard RBM performed better over the BAC measure. This behavior is
surprising since both Kappa and BAC were proposed to cope with unbalanced
data evaluation, thus expecting to behave similarly to the other models.

RBM DBN-2 DBN-3

Aug-RBM Aug-AE Baseline Aug-RBM Aug-AE Baseline Aug-RBM Aug-AE Baseline

ACC 93.54±0.37 84.25±1.13 90.30±0.052 94.03±0.19 92.13±0.99 91.91±0.45 94.41±0.32 94.01±0.19 93.08±0.31

BAC 92.09±0.68 67.15±2.54 79.94±0.55 90.98±0.77 88.36±1.77 78.34±1.33 91.06±0.62 90.39±0.30 78.67±1.75

Kappa 0.884±0.006 0.685±0.025 0.769±0.009 0.891±0.004 0.857±0.015 0.794±0.009 0.897±0.006 0.890±0.003 0.820±0.009

Table 4. Effectiveness over Eggs dataset using the proposed approaches.

The behavior observed in the Protozoa dataset, presented in Table 5, high-
lights an interesting scenario. One of the best ACC (87.51%) and Kappa (0.736)
results were achieved with the simplest model, i.e., an RBM using Aug-RBM.
Such behavior points out that, for such a dataset, we can compress the input
data into a small latent space, thus extracting useful and representative features
with only 500 units, while the performance is still remarkable even with unbal-
anced classes. Moreover, concerning BAC values, one can observe that DBN-2
and DBN-3 with data augmentation by Restricted Boltzmann Machines, as well
as DBN-3 using AE for synthetic data generation, obtained similar results.

RBM DBN-2 DBN-3

Aug-RBM Aug-AE Baseline Aug-RBM Aug-AE Baseline Aug-RBM Aug-AE Baseline

ACC 87.51±0.14 75.85±0.13 86.21±0.30 86.97±0.31 87.01±0.22 85.97±0.50 85.97±0.59 87.29±0.37 84.73±0.94

BAC 77.84±0.82 43.85±0.84 63.77±1.15 78.84±1.22 73.83±0.74 62.97±2.88 77.66±1.88 77.87±1.58 60.55±2.85

Kappa 0.736±0.004 0.368±0.009 0.662±0.006 0.731±0.007 0.710±0.005 0.659±0.012 0.711±0.010 0.724±0.009 0.615±0.023

Table 5. Effectiveness over Protozoa dataset using the proposed approaches.
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4.2 Training Analysis

Regarding the training analysis, we considered the datasets aumented with
RBMs only since these models outperformed the ones using Autoencoders. Fig-
ure 2 depicts the evolution of the Kappa values over the testing set during
training. One can notice that: (i) data augmentation provided a considerable im-
provement in the results, (ii) training with data augmentation led to more stable
results (Figures 2a and 2b), and (iii) differently from the other two datasets, tech-
niques over Protozoa kept learning up to 80 epochs (Figure 2c). Such behavior
is somehow expected since Protozoa dataset poses a more challenging scenario.
The stable results provided by data augmentation may allow us to apply some
criteria for convergence analysis during training, such as early stop.

(a) (b)

(c)

Fig. 2. Average Kappa values over the testing set concerning (a) Larvae, (b) Eggs, and
(c) Protozoa datasets.
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4.3 Data Augmentation Analysis

Figure 3 shows some synthetic data generated by RBMs using 500 hidden neu-
rons. One can observe that RBMs were able to generate useful samples, which
corroborates the aforementioned results, i.e., such a process improved the par-
asites classification. Besides, the less accurate results concern the ones related
to the Larvae dataset since we have a small subset of samples and their shape
change considerably among the parasites.

(a) (b) (c) (d) (e) (f)

Fig. 3. Data augmentation analysis: (a) real and (b) synthetic Larvae samples, (c) real
and (d) synthetic Eggs samples, and (e) real and (f) synthetic Protozoa samples.

5 Conclusions and Future Works

This paper dealt with the problem of human intestinal parasites classification
through RBM and DBN approaches. Experiments conducted over three dis-
tinct scenarios composed of Larvae, Eggs, and Protozoa, which are also partially
surrounded by fecal impurities, confirmed the robustness of the models for clas-
sification purposes. Additionally, the performance of RBMs was also compared
against Autoencoders for data augmentation since the datasets are highly unbal-
anced. Regarding future works, we intend to analyze the behavior of the models
over a broader spectrum using colored images, as well as employing other RBM-
based models, such as the Infinite RBMs (iRBMs) and the DBMs, to the task
of human intestinal parasites classification.
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