Skip to main content

Obstacle Avoidance for Drones Based on the Self-Organizing Migrating Algorithm

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2020)

Abstract

The paper proposes a method for the drone to catch the given target and avoid detected obstacles in its path based on the self-organizing migrating algorithm. In particular, a two-component fitness function is proposed based on the principle that the closer the target, the lower the fitness value, and the closer the obstacle, the higher the fitness value. Self-organizing migrating algorithm, a swarm intelligence algorithm, is used to predict the next positions that the drone will move to. These positions both satisfy the requirement to avoid obstacles and shorten the distance to the target. A map of two drones, two corresponding targets and four static obstacles was modeled on Matlab. The simulation results verify the correctness and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arantes, M.S., Arantes, J.S., Toledo, C.F.M., Williams, B.C.: A hybrid multi-population genetic algorithm for UAV path planning. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 853–860 (2016)

    Google Scholar 

  2. Cabreira, T.M., Ferreira, P.R., Di Franco, C., Buttazzo, G.C.: Grid-based coverage path planning with minimum energy over irregular-shaped areas with UAVs. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 758–767. IEEE (2019)

    Google Scholar 

  3. Del Ser, J., et al.: Bio-inspired computation: where we stand and what’s next. Swarm Evol. Comput. 48, 220–250 (2019)

    Article  Google Scholar 

  4. Diep, Q.B., Zelinka, I.: The movement of swarm robots in an unknown complex environment. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S.B. (eds.) AETA 2018. LNEE, vol. 554, pp. 949–959. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14907-9_92

    Chapter  Google Scholar 

  5. Evenson, R., Ranis, G.: Science and Technology: Lessons for Development Policy. Routledge (2019)

    Google Scholar 

  6. Ghamry, K.A., Kamel, M.A., Zhang, Y.: Multiple UAVs in forest fire fighting mission using particle swarm optimization. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1404–1409. IEEE (2017)

    Google Scholar 

  7. Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif. Manag. Rev. 61(4), 5–14 (2019)

    Article  Google Scholar 

  8. Lin, Y., Saripalli, S.: Sampling-based path planning for UAV collision avoidance. IEEE Trans. Intell. Transp. Syst. 18(11), 3179–3192 (2017)

    Article  Google Scholar 

  9. Mavrovouniotis, M., Li, C., Yang, S.: A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol. Comput. 33, 1–17 (2017)

    Article  Google Scholar 

  10. Pan, T.-S., Dao, T.-K., Pan, J.-S., Nguyen, T.-T.: An unmanned aerial vehicle optimal route planning based on compact artificial bee colony. Advances in Intelligent Information Hiding and Multimedia Signal Processing. SIST, vol. 64, pp. 361–369. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50212-0_43

    Chapter  Google Scholar 

  11. Phung, M.D., Quach, C.H., Dinh, T.H., Ha, Q.: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Autom. Constr. 81, 25–33 (2017)

    Article  Google Scholar 

  12. Revay, L., Zelinka, I.: Swarm intelligence in virtual environment. J. Adv. Eng. Comput. 3(2), 415–424 (2019)

    Article  Google Scholar 

  13. Roberge, V., Tarbouchi, M., Labonté, G.: Fast genetic algorithm path planner for fixed-wing military UAV using GPU. IEEE Trans. Aerosp. Electron. Syst. 54(5), 2105–2117 (2018)

    Article  Google Scholar 

  14. Tian, G., Zhang, L., Bai, X., Wang, B.: Real-time dynamic track planning of multi-UAV formation based on improved artificial bee colony algorithm. In: 2018 37th Chinese Control Conference (CCC), pp. 10055–10060. IEEE (2018)

    Google Scholar 

  15. Truong, T.C., Zelinka, I., Senkerik, R.: Neural swarm virus. In: Zamuda, A., Das, S., Suganthan, P.N., Panigrahi, B.K. (eds.) SEMCCO/FANCCO - 2019. CCIS, vol. 1092, pp. 122–134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37838-7_12

    Chapter  Google Scholar 

  16. Wanka, R.: Swarm intelligence. IT Inf. Technol. 61(4), 157–158 (2019)

    Google Scholar 

  17. Yao, P., Wang, H., Su, Z.: Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs. Aerosp. Sci. Technol. 54, 10–22 (2016)

    Article  Google Scholar 

  18. Zelinka, I.: SOMA—self-organizing migrating algorithm. In: New Optimization Techniques in Engineering, pp. 167–217. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39930-8_7

  19. Zelinka, I.: SOMA—self-organizing migrating algorithm. In: Davendra, D., Zelinka, I. (eds.) Self-Organizing Migrating Algorithm. SCI, vol. 626, pp. 3–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28161-2_1

    Chapter  MATH  Google Scholar 

  20. Zelinka, I., Das, S., Sikora, L., Šenkeřík, R.: Swarm virus-next-generation virus and antivirus paradigm? Swarm Evol. Comput. 43, 207–224 (2018)

    Article  Google Scholar 

  21. Zelinka, I., Sikora, L.: StarCraft: brood war—strategy powered by the soma swarm algorithm. In: 2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 511–516. IEEE (2015)

    Google Scholar 

Download references

Acknowledgment

The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2020/78, VSB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc Bao Diep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diep, Q.B., Truong, T.C., Zelinka, I. (2020). Obstacle Avoidance for Drones Based on the Self-Organizing Migrating Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics