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Abstract. Meta-heuristic algorithms are reliable tools for modern opti-
mization. Yet their amount is so immense that it is hard to pick just one
to solve a specific problem. Therefore many researchers hold on known,
approved algorithms. But is it always beneficial? In this paper, we use the
meta-heuristics for the design of cascade PID controllers and compare the
performance of the newly developed Bison Algorithm with well-known
algorithms like the Differential Evolution, the Genetics Algorithm, the
Particle Swarm Optimization, and the Cuckoo Search. Also, in the pro-
posed approach, the controller parameters were encoded to increase the
chance of reducing the controller structure, and thus facilitate the auto-
matic selection of its configuration. The simulations were performed for
three different control problems and checked whether the use of cascade
structures could bring significant benefits in comparison to the use of
classic PID controllers.
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1 Introduction

The goal of a typical control system is to achieve the set state of a specific
element of the controlled object. Such an element can be, e.g., the speed of a
motor or the position of some mass. The difference between the current and the
set state is called an offset. The control system should efficiently decrease the
offset while also taking into account various other control criteria [1]. This is
achieved by properly affecting the object by basing it on the control signal. The
most commonly used in practice PID controllers [2] generate a control signal by
amplifying the offset signal and its integral and derivative. To ensure efficient
operation of the PID controller, three gain factors should be selected (propor-
tional, integral, and differentiating). Therefore, the problem of optimizing three
parameters arises, which is unfortunately often dealt with by a trial and error
method, or the parameters are selected based on expert knowledge.
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Control systems are constantly evolving, and new solutions in this field are
emerging. Starting from FOPID controllers [3], through cascade PID controllers
[4], and ending with controllers based on artificial intelligence (e.g. fuzzy systems
[5], neural networks [6]) or hybrid solutions [7]. Along with their complexity and
the increased number of parameters that need to be optimized, their control ca-
pabilities also increase. The cascade or fuzzy-based controllers mentioned above
can already be based on a larger number of signals (not only offset), but they
also allow to eliminate control symmetry and other defects appearing in standard
PID controllers [8]. However, a larger number of signals means that an expert
often selects the controller structure a priori.

The development of control systems increased the computational complex-
ity and the difficulty of optimizing their parameters. Population-based meta-
heuristic algorithms (PBA) seem to be suitable methods for such optimization.
Their idea is based on processing a population of individuals, each representing
one solution of the addressed problem, similarly as it would be dealt with in the
real world. The gain of meta-heuristics lies in an accessible and quick solution,
improving in the process: beneficially for ever-changing, complex systems.

Meta-heuristics usually root in mimicking bio-inspired phenomena: how did
nature manage the optimization. Simulations of various principles from genet-
ics, the theory of evolution, or movement patterns of a variety of animal species,
created a significant number of optimization methods like the Differential Evo-
lution [9], the Genetic Algorithm [10], the Particle Swarm Optimization [11], the
Grey Wolf Optimizer [12], or the Cuckoo Search [13]. And since the source of
inspiration is unlimited, the number of bio-inspired algorithms rises as well [14].

The continuous development of population-based algorithms makes it diffi-
cult to select one to solve a specific problem. Moreover, according to the theory
of No Free Lunch in optimization, there is no single optimal method to solve
all problems [15]. As a result, in many new papers, the old, well-known, and
proven population algorithms such as GA, DE, PSO, and CS are being used (or
their modifications) [16, 17]. However, the increase in complexity of the solved
problems causes new population algorithms to find their place (see, e.g., [14,
18]). New algorithms are using a variety of different mechanisms to overcome
the optimization problems [19], such as population division into subgroups with
different behaviour [20], dynamic adaptation of parameters [21, 22], population
restart [23], or boosting the exploration of the feasible solution area [24].

In this paper, the idea of a cascade PID controller with a dynamic structure
is proposed. This approach frees the user from the need to design the exact
controller structure. To cope with that, a Bison Algorithm (BA [24]) is used
to optimize the controller parameters. The idea of this paper is also to check
whether a new algorithm, such as BA, allows one to get better results compared
to classic population-based algorithms. The results were verified on three control
problems.

The structure of the paper is as follows: in Section 2 a proposed method is
described, in Section 3 the simulations are described and summarized, and in
Section 4 the conclusions are drawn.
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2 Methods

This section describes the proposed controller structures, the method for their
evaluation, and finally, the Bison Algorithm, which was used to optimize them.

2.1 Proposed controller structures

The output for typical parallel form of PID controller is calculated as follows:

u (t) = Kp · e (t) +Ki ·
∫ t

0

e (t) dt+Kd ·
de (t)

dt
, (1)

where u (t) is control signal, e (t) is offset and Kp,Ki,Kd are proportional, inte-
gral and derivative gains. If the gain value is equal to zero, corresponding element
of controller can be treated as reduced, which as a result allows to obtain the
P, I, D, PI, PD or ID controllers. In the case of population-based algorithms,
parameter values usually take random real values during initialization, so the
chance that a given controller element will be initialized as a reduced one is
virtually none. That is why, in this paper we propose an approach that will in-
crease the chance of creating a population of controller solutions in which some
elements are reduced at the very beginning:

u (t) = r (Kp) · e (t) + r (Ki) ·
∫ t

0

e (t) dt+ r (Kd) ·
de (t)

dt
, (2)

where r (K) is defined as follows:

r (K) =

{
0 for K < K− + α · (K+ −K−)

(K−K−−α·(K+−K−))
(K+−K−) for else

, (3)

where K− and K+ is minimum and maximum value that K can take, α stands
for coefficient setting below which value K is treated as zero. It is worth noting
that the equation (3) scales the parameter K accordingly so that the final value
of it will be within the appropriate range.

Cascade PID controllers use multiple PID blocks connected in cascades. The
structure of such controllers depends on the given simulation problem and the
number of signals that can be used. In connection with the above, further ex-
amples of problems and structures proposed for them will be described further
below. The proposed structures use PID blocks by the formula (2). This ap-
proach to dynamic structure selection of cascade PID controllers is new and
does not require the use of additional binary parameters or hybrid algorithms,
such as in paper [1].

Water Tank Test (WTT). In this problem the purpose of the controller is
to maintain the desired water level h∗ in the tank by changing the water inflow.
The tank has: a surface area A, a controllable water inflow qin, an external water
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inflow qex, an additional emergency water outflow qem (e.g. when more water is
needed in emergency situations) and s a water outflow qout. The water level in
the tank is determined as follows (see e.g. [25]):

ḣ =
1

A

(
qin + qex − qem − s ·

√
2gh

)
, (4)

where g = 9.81m/s2 is the gravitational acceleration. The proposed controller
structure for this problem is shown in Fig.1.a).

a) b) c)

Fig. 1. Proposed cascade PID structures for control problems under consideration: a)
WTT, b) MSD, C) DCM.

Mass Spring Damper (MSD). In this problem, the purpose of the controller
is to maintain the desired position s∗ of mass m1 by managing the control force
F . The mass is connected via spring to the mass m2 and then by another spring
to constant point y. The positions of masses are marked analogously as s1 and
s2 and the stiffness constant k for both masses were assumed to be the same.
The equations of such model are described as follows (see, e.g., [26]):{

s1 = v1 · t+ 1
2a1 · t

2 v1 = a1 · t a1 = 1
m1

(k · (s2 − s1)− v1 · y)

s2 = v2 · t+ 1
2a2 · t

2 v2 = a2 · t a2 = 1
m2

(k · (F − s2)− v2 · y)
. (5)

The proposed controller structure for this problem is shown on Fig.1.b).

DC Motor (DCM). In this problem the purpose of the controller is to maintain
the desired motor speed ω∗ by managing input voltage F . The motor has: the
speed ω, moment of inertia of the rotor J , viscous friction constant b, motor
torque T = Kt · i (where i is armature current and Kt is motor torque constant),
electric inductance L, electric resistance R and counter-electromotive force e =
Ke · ω̇ (where Ke is electromotive force constant). The equations of such model
are described as follows (see e.g. [27]):{

ω̇ = 1
J (Kt · i− b · ω)

i̇ = 1
L (−R · i+ V −Ke · ω)

. (6)

The proposed controller structure for this problem is shown on Fig.1.c).
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It should be noted that the proposed approach with the dynamic reduction
of the structure will allow the reduction of entire blocks in cascade structures.
Because of that, a simplified controller can be obtained, and the redundant con-
troller’s input signals will not be used. Therefore, a similar approach can be used
for developing structures for other simulation problems, and the optimization al-
gorithm should itself correct the structure and select signals that bring the most
benefits in the control process.

2.2 Fitness function

To evaluate the controller, four control criteria were used, and then they were
aggregated into the single-objective function, which is described in this section.

Error. The first criterion counts the sum of the offsets in time. For the first of
the problem it can be written as follows:

error =
1

J

∑
J
j=1|h∗ (tj)− h (tj)|, (7)

where tj stands for discrete-time point (j = 1, ..., J), J stands for time sample.
For the rest of the simulation problems, it can be defined analogously.

Overshoot. The second criterion is an overshoot, i.e. exceeding the desired
water level for WTT problem (for the rest of simulation problems it can be
calculated analogously):

over = max
j=1,...,J

{h (tj)− h∗ (tj)} . (8)

Oscillations. The third criterion is occurrence of oscillations calculated as the
sum of changes in controller output u (tk):

oscs =
1

J − 1

∑
J
j=2|u (tj)− u (tj−1)|. (9)

Suit. The last criterion’s purpose is to check matching the signal to the desired
one. In control systems, a steady offset error may appear (an error that persists
in steady-state [28]). Checking if the signal is close to the given one can eliminate
such cases, and this can be calculated as follows for the WTT problem:

suit =
1

K

∑
K
k=1

{
0 for |h∗ (tk)− h (tk)| < β
1 for else

, (10)

where β is an acceptable offset of the signal. For the rest of the simulation
problems, this criterion can be defined analogously.
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Fitness. In this paper the four presented above criteria are aggregated into
single-objective function, which should be minimized and it is defined as follows:

fitness = error · we + over · wv + oscs · wo + suit · ws, (11)

where w stands for weights of components that might differ for each simulation
problem. It is worth noting that the above function does not take into account
the complexity of the controller structure. Thanks to this, the optimization of
parameters will not strive to obtain the simplest structure but to obtain the
structure best suited for the given problem. If one wants to achieve simpler
structures, one should include an additional criterion to assess the complexity
of the structure.

2.3 Bison Algorithm description

The Bison Algorithm is a recent swarm algorithm inspired by the behavior of
bison herds [24]. When bison are in danger, they form a circle with the strongest
on the outline, trying to protect the weak ones inside. The algorithm simulates
this movement by shifting the individuals closer to the center of several fittest
solutions. Since bison are also persistent and remarkable runners, the algorithm
devotes a small set of solutions to explore the search space; dividing the popu-
lation into two groups: the swarming and the running group.

The main loop of the algorithm starts by computing the target of the swarm-
ing movement, and the swarming group moves in a direction towards the target,
if it improves their quality. The running group shifts in the run direction vector,
which is slightly altered after each iteration. If a runner comes upon a promising
solution, better than at least one of the swarming ones, the newly discovered
solution is copied to the swarming group, and it becomes the target of the next
movement; otherwise, the target is computed from several fittest solutions.

Algorithm 1. Bison Algorithm Pseudocode

1. generate the swarming group randomly

generate the running group around the best bison

generate the run direction = random(ub−lb45 , ub−lb15 )dim
2. for every migration round m do

3. determine the swarming target:

4. if f(runner(m−1) ) < f(swarmer(m−1)) then

5. center = runner(m−1)

6. else

7. compute the center of the strongest solutions:

weight = (10, 20, 30, ..., 10 · s)
center =

∑s
i=1

weighti · xi∑s

j=1
weightj

8. for every bison in the swarming group do

9. compute new position candidate xnew:
xnew = xold + (center − xold) · random(0, overstep)dim

10. if f(xnew) < f(xold) then move to the xnew
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11. end for

12. adjust the run direction vector

run direction = run direction · random(0.9, 1.1)dim
13. for every bison in the running group do

14. move: xnew = xold + run direction
15. end for

16. check boundaries

17. if f(xrunner) < f(xswarmer)
18. then copy xrunner to the swarming group

19. sort the swarming group by f(x) values

20. end for

Where:

– run direction is the run direction vector,

– ub and lb are the upper and lower boundaries of the search space,

– xnew and xold represent the current and the previous solutions respectively,

– and dim is a dimension,

– s is the elite group size parameter defining the number of the fittest solutions
for center computation,

– overstep parameter defines the maximum length of the swarming movement,

– and swarm group size parameter sets number of bison performing the
swarming movement.

3 Simulations

In the simulations, the same assumptions were made for all algorithms: number
of evaluations: 25000, number of individuals in the population: 50, simulation
repetitions: 100, algorithm parameters were selected following the suggestions
from the literature (see e.g. [9–11, 13, 24]).

The following parameters were set: for WTT: h∗ = 1m, A = 4.0m2, qout =
s ·
√

2gh, s = 0.05m2, simulation time T = 100s, time step dt = 0.1s, we = 10,
wv = 0.01, wo = 1.0, ws = 0.1, qex and qem are shown in Fig.2.a)., for MSD:
m1 = m2 = 0.2kg, k = 10, y = 0.5m, simulation time T = 10s, time step dt =
0.001s, we = 1, wv = 0.01, wo = 0.5, ws = 0.1, s∗ is shown in Fig.2.b). for DCM:
J = 0.01kg ·m2/s2, b = 0.1Nms, Kt = 0.01Nm/Amp, L = 0.5H, R = 1.0ohm,
Ke = 0.01Nm/Amp, simulation time T = 8s, time step dt = 0.005s, we = 1,
wv = 0.01, woc = 0.1, ws = 0.1 and ω∗ is shown in Fig.2.c).

3.1 Simulation results

Detailed simulation results are shown in Table 1, while examples of the operation
of the obtained control systems are shown in Fig. 3.
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Fig. 2. Signals that vary in time for: a) WTT, b) MSD, C) DCM.

Table 1. Simulation results. Top results are marked in bold (results not worse by 5%
from the best-found value in each row were considered as the top ones), and the worst
results are underlined (results worse twice then the best-found value in each row were
considered as the worst). Simulation time was averaged for all considered problems.

problem structure GA DE PSO CS BA

WTT PID (2) 0.6754 0.6628 0.7002 0.6674 0.6679
WTT Cascade PID (2) 1.0282 0.8297 1.0791 0.7917 0.7122

average MSD PID (2) 0.2222 0.1580 0.4694 0.1635 0.1608
simulation MSD Cascade PID (2) 0.2281 0.0372 1.8853 0.0445 0.0445
results DCM PID (2) 0.0245 0.0633 0.0246 0.0245 0.0245

DCM Cascade PID (2) 0.0929 0.0249 0.1173 0.0206 0.0208
Times in top 2 3 1 4 5

Times in unnaceptable 2 1 3 0 0

WTT PID (2) 0.6572 0.6418 0.6414 0.6402 0.6351
WTT Cascade PID (2) 0.7607 0.6609 0.6576 0.6921 0.6488
MSD PID (2) 0.1189 0.1189 0.1189 0.1220 0.1189

best MSD Cascade PID (2) 0.0348 0.0333 0.0365 0.0366 0.0341
simulation DCM PID (2) 0.0245 0.0633 0.0245 0.0245 0.0245
results DCM Cascade PID (2) 0.0205 0.0203 0.0205 0.0205 0.0205

Times in top 5 5 5 4 6
Times in unnaceptable 0 1 0 0 0

Average time (s) 190 193 333 328 242

3.2 Simulation conclusions

The use of cascade PID controllers has brought a significant improvement in
control for MSD and DCM problems (see Table 1). Moreover, depending on
the problem, optimization of the structure automatically discards redundant
elements (see Fig. 3). Optimization algorithms have allowed to find good pa-
rameters at which the states of the object tend to quickly settle in the control
process without the phenomenon of overshooting and other disturbances (see
Fig. 3), even for the WTT problem with two external signals changing in time
(see Fig. 2.a). The Bison Algorithm performed well compared to the other meta-
heuristics and obtained top results for most of the considered problems.
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Fig. 3. Examples of the operation of the obtained control systems for: a) WTT, b)
MSD, C) DCM. Reduced structure elements have been grayed out.

4 Conclusion

In this paper, we used several meta-heuristic algorithms to design PID con-
trollers, focusing on the potential benefits of cascade layout over the classic one.
We concluded that cascade PID controllers might be beneficial and that an in-
creased number of dimensions does not harm the performance of the population-
based algorithms.

On several problems of our experiment, the recent Bison Algorithm was able
to outperform the Differential Evolution. The results brought us to consider the
contribution of using novel meta-heuristics over the well-established and most-
used optimization algorithms. Therefore, the future direction of our research
should focus on more applications of metaheuristics, the novel ones included.
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