Skip to main content

A Population-Based Method with Selection of a Search Operator

  • Conference paper
  • First Online:
  • 1884 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12415))

Abstract

This paper presents a method based on a population in which the parameters of individuals can be processed by operators from various population-based algorithms. The mechanism of selecting operators is based on the introduction of an additional binary parameters vector located in each individual, on the basis of which it is decided which operators are to be used to modify individuals’ parameters. Thus, in the proposed approach, many operators can be used simultaneously for this purpose. As part of the paper various methods of initializing binary parameters, various population sizes, and their impact on the operation of the algorithm were tested. The simulation was carried out on a well-known set of benchmark functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adam, S.P., Alexandropoulos, S.-A.N., Pardalos, P.M., Vrahatis, M.N.: No free lunch theorem: a review. In: Demetriou, I.C., Pardalos, P.M. (eds.) Approximation and Optimization. SOIA, vol. 145, pp. 57–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12767-1_5

    Chapter  Google Scholar 

  2. Bałanda, M., Pełka, R., Fitta, M., Laskowski, L., Laskowska, M.: Relaxation and magnetocaloric effect in the Mn 12 molecular nanomagnet incorporated into mesoporous silica: a comparative study. RSC Adv. 6(54), 49179–49186 (2016)

    Article  Google Scholar 

  3. Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. (AMCS) 263, 603–621 (2016)

    Article  MathSciNet  Google Scholar 

  4. Besbes, O., Gur, Y., Zeevi, A.: Optimal exploration-exploitation in a multi-armed bandit problem with non-stationary rewards. Stoch. Syst. 9(4), 319–337 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bilski, J., Kowalczyk, B., Żurada, J.M.: Application of the givens rotations in the neural network learning algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 46–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_5

    Chapter  Google Scholar 

  6. Bilski, J., Smoląg, J., Żurada, J.M.: Parallel approach to the Levenberg-Marquardt learning algorithm for feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 3–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_1

    Chapter  MATH  Google Scholar 

  7. Cao, Y., Samidurai, R., Sriraman, R.: Stability and dissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays. J. Artif. Intell. Soft Comput. Res. 9(3), 189–204 (2019)

    Article  Google Scholar 

  8. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Dawar, D., Ludwig, S.A.: Effect of strategy adaptation on differential evolution in presence and absence of parameter adaptation: an investigation. J. Artif. Intell. Soft Comput. Res. 8(3), 211–235 (2018)

    Article  Google Scholar 

  10. Del Ser, J., et al.: Bio-inspired computation: where we stand and what’s next. Swarm Evol. Comput. 48, 220–250 (2019)

    Article  Google Scholar 

  11. Dziwiński, P., Bartczuk, Ł., Paszkowski, J.: A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 10(2), 95–111 (2020)

    Article  Google Scholar 

  12. Faris, H., Aljarah, I., Al-Betar, M.A., Mirjalili, S.: Grey wolf optimizer: a review of recent variants and applications. Neural Comput. Appl. 30(2), 413–435 (2018). https://doi.org/10.1007/s00521-017-3272-5

    Article  Google Scholar 

  13. Javaid, M., Abbas, M., Liu, J.B., Teh, W.C., Cao, J.: Topological properties of four-layered neural networks. J. Artif. Intell. Soft Comput. Res. 9(2), 111–122 (2019)

    Article  Google Scholar 

  14. Kamimura, R.: Supposed maximum mutual information for improving generalization and interpretation of multi-layered neural networks. J. Artif. Intell. Soft Comput. Res. 9(2), 123–147 (2019)

    Article  Google Scholar 

  15. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Kennedy, J., Eberhart, R., Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks (IEEE), vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  17. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020)

    Article  Google Scholar 

  18. Krell, E., Sheta, A., Balasubramanian, A.P.R., King, S.A.: Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning. J. Artif. Intell. Soft Comput. Res. 9(4), 267–282 (2019)

    Article  Google Scholar 

  19. Laskowski, Ł.: Hybrid-maximum neural network for depth analysis from stereo-image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 47–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_7

    Chapter  Google Scholar 

  20. Laskowski, Ł.: Objects auto-selection from stereo-images realised by self-correcting neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 119–125. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4_14

    Chapter  Google Scholar 

  21. Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass implementation of a hopfield neural structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 89–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_9

    Chapter  Google Scholar 

  22. Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Molecular approach to hopfield neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 72–78. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_7

    Chapter  Google Scholar 

  23. Laskowska, M., et al.: Functionalized mesoporous silica thin films as a tunable nonlinear optical material. Nanoscale 33, 12110–12123 (2017)

    Article  Google Scholar 

  24. Ludwig, S.A.: Applying a neural network ensemble to intrusion detection. J. Artif. Intell. Soft Comput. Res. 9(3), 177–188 (2019)

    Article  Google Scholar 

  25. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

  26. Łapa, K., Cpałka, K., Wang, L.: A method for nonlinear fuzzy modelling using population based algorithm with flexibly selectable operators. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 263–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_24

    Chapter  Google Scholar 

  27. Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, 201212(34), pp. 281–295 (2013)

    Google Scholar 

  28. Nobukawa, S., Nishimura, H., Yamanishi, T.: Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity. J. Artif. Intell. Soft Comput. Res. 9(4), 283–291 (2019)

    Article  Google Scholar 

  29. Ono, K., Hanada, Y., Kumano, M., Kimura, M.: Enhancing Island model genetic programming by controlling frequent trees. J. Artif. Intell. Soft Comput. Res. 9(1), 51–65 (2019)

    Article  Google Scholar 

  30. Price, K.V.: Differential evolution. In: Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H. (eds.) Handbook of Optimization, pp. 187–214. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-9863-7_419

    Chapter  Google Scholar 

  31. Rafajłowicz, W.: A hybrid differential evolution-gradient optimization method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 379–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_35

    Chapter  Google Scholar 

  32. Rafajłowicz, W.: Cosmic rays inspired mutation in genetic algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 418–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_37

    Chapter  Google Scholar 

  33. Rafajłowicz, E., Rafajłowicz, W.: Fletcher’s filter methodology as a soft selector in evolutionary algorithms for constrained optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 333–341. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29353-5_39

    Chapter  MATH  Google Scholar 

  34. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1

    Book  MATH  Google Scholar 

  35. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A content-based recommendation system using neuro-fuzzy approach. In: Proceedings of the 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, pp. 1–8 (2018)

    Google Scholar 

  36. Rutkowski, T., Łapa, K., Jaworski, M., Nielek, R., Rutkowska, D.: On explainable flexible fuzzy recommender and its performance evaluation using the akaike information criterion. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 717–724. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1_78

    Chapter  Google Scholar 

  37. Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y.: Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. J. Artif. Intell. Soft Comput. Res. 8(2), 103–110 (2018)

    Article  Google Scholar 

  38. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 91–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_9

    Chapter  Google Scholar 

  39. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  40. Tambouratzis, G.: Using particle swarm optimization to accurately identify syntactic phrases in free text. J. Artif. Intell. Soft Comput. Res. 8(1), 63–77 (2018)

    Article  Google Scholar 

  41. Tambouratzis, G., Vassiliou, M.: Swarm algorithms for NLP-the case of limited training data. J. Artif. Intell. Soft Comput. Res. 9(3), 219–234 (2019)

    Article  Google Scholar 

  42. Yang, X.S., Deb, S., Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC, IEEE), pp. 210–214 (2009)

    Google Scholar 

  43. Yang, X.S., Bat algorithm: literature review and applications. arXiv preprint arXiv:1308.3900 (2013)

  44. Younes, M., Khodja, F., Kherfane, R.L.: Multi-objective economic emission dispatch solution using hybrid FFA (firefly algorithm) and considering wind power penetration. Energy 67, 595–606 (2014)

    Article  Google Scholar 

  45. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_44

    Chapter  Google Scholar 

  46. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28567-2_13

    Chapter  Google Scholar 

  47. Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 175–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_17

    Chapter  Google Scholar 

  48. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 232–246. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_21

    Chapter  Google Scholar 

Download references

Acknowledgment

This paper was financed under the program of the Minister of Science and Higher Education under the name ‘Regional Initiative of Excellence’ in the years 2019–2022, project number 020/RID/2018/19 with the amount of financing PLN 12 000 000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Łapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łapa, K., Cpałka, K., Niksa-Rynkiewicz, T., Wang, L. (2020). A Population-Based Method with Selection of a Search Operator. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics