Skip to main content

A Mathematical Model for Optimum Error-Reject Trade-Off for Learning of Secure Classification Models in the Presence of Label Noise During Training

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2020)

Abstract

In the present contribution we investigate the mathematical model of the trade-off between optimum classification and reject option. The model provides a threshold value in dependence of classification, rejection and error costs. The model is extended to the case that the training data are affected by label noise. We consider the respective mathematical model and show that the optimum threshold value does not depend on the presence/absence of label noise. We explain how this knowledge could be used for probabilistic classifiers in machine learning.

All authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The generalization to class-wise correct classification costs is obvious.

References

  1. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  2. Pastor-Pellicer, J., Zamora-Martínez, F., España-Boquera, S., Castro-Bleda, M.J.: F-measure as the error function to train neural networks. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 376–384. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38679-4_37

    Chapter  Google Scholar 

  3. Herbei, R., Wegkamp, M.H.: Classification with reject option. Can. J. Stat. 34(4), 709–721 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory 16(1), 41–46 (1970)

    Article  Google Scholar 

  5. Hansen, L.K., Liisberg, C., Salamon, P.: The error-reject tradeoff. Open. Syst. Inf. Dyn. 4, 159–184 (1997)

    Article  Google Scholar 

  6. Pillai, I., Fumera, G., Roli, F.: Multi-label classification with a reject option. Pattern Recogn. 46, 2256–2266 (2013)

    Article  Google Scholar 

  7. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Yuan, M., Wegkamp, M.H.: Classification methods with reject option based on convex risk minimization. J. Mach. Learn. Res. 11, 111–130 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Villmann, T., et al.: Self-adjusting reject options in prototype based classification. In: Merényi, E., Mendenhall, M.J., O’Driscoll, P. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization. AISC, vol. 428, pp. 269–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28518-4_24

    Chapter  Google Scholar 

  10. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  Google Scholar 

  11. Villmann, A., Kaden, M., Saralajew, S., Hermann, W., Biehl, M., Villmann, T.: Reliable patient classification in case of uncertain class labels using a cross-entropy approach. In: Verleysen, M. (ed.) Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018), Bruges, Belgium, pp.153–158. i6doc.com, Louvain-La-Neuve (2018)

    Google Scholar 

  12. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  13. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley. University of California Press (1961)

    Google Scholar 

  14. Cichocki, A., Amari, S.-I.: Families of alpha- beta- and gamma- divergences: flexible and robust measures of similarities. Entropy 12, 1532–1568 (2010)

    Article  MathSciNet  Google Scholar 

  15. Villmann, T., Cichocki, A., Principe, J.: Information theory related learning. In: Verleysen, M. (ed.) Proceedings of European Symposium on Artificial Neural Networks (ESANN 2011), pp. 1–10. i6doc.com, Louvain-La-Neuve (2011)

    Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  17. Zeng, J., Ustun, B., Rudin, C.: Interpretable classification models for recidivism prediction. J. R. Stat. Soc. Ser. A. 180, 1–34 (2017)

    Google Scholar 

  18. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  19. Villmann, T., Saralajew, S., Villmann, A., Kaden, M.: Learning vector quantization methods for interpretable classification learning and multilayer networks. In: Sabourin, C., Merelo, J.J., Barranco, A.L., Madani, K., Warwick, K. (eds.) Proceedings of the 10th International Joint Conference on Computational Intelligence (IJCCI), Sevilla, pp. 15–21. SCITEPRESS - Science and Technology Publications, Lda, Lissabon (2018). ISBN 978-989-758-327-8

    Google Scholar 

  20. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdiscip. Rev. Cogn. Sci. 2, 92–111 (2016)

    Article  Google Scholar 

  21. Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning - review of recent developments in Learning Vector Quantization. Found. Comput. Decis. Sci. 39(2), 79–105 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kohonen, T.: Self-Organizing Maps. SSINF, vol. 30. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97610-0

    Book  MATH  Google Scholar 

  23. Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an alternative to SVM and deep learning? J. Artif. Intell. Soft Comput. Res. 7(1), 65–81 (2017)

    Article  Google Scholar 

  24. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  25. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Comput. 15, 1589–1604 (2003)

    Article  Google Scholar 

  26. Villmann, A., Kaden, M., Saralajew, S., Villmann, T.: Probabilistic learning vector quantization with cross-entropy for probabilistic class assignments in classification learning. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 724–735. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_67

    Chapter  Google Scholar 

  27. Saralajew, S., Holdijk, L., Rees, M., Asan, E., Villmann, T.: Classification-by-components: probabilistic modeling of reasoning over a set of components. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS 2019), pp. 2788–2799. MIT Press (2019)

    Google Scholar 

  28. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)

    Article  Google Scholar 

Download references

Acknowledgement

M. Mohannazadeh Bakhtiari is supported by a PhD-grant of the European Social Fund (ESF). S. Musavishavazi is supported by an ESF-project-grant supporting local cooperations between industry and universities for innovative research developments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musavishavazi, S., Mohannazadeh Bakhtiari, M., Villmann, T. (2020). A Mathematical Model for Optimum Error-Reject Trade-Off for Learning of Secure Classification Models in the Presence of Label Noise During Training. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics