Skip to main content

Empirical Mode Decomposition Based Data Augmentation for Time Series Prediction Using NARX Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12415))

Abstract

Neural networks (NNs) have recently achieved significant performance gains for time series forecasting. However, they require large amounts of data to train. Data augmentation techniques have been suggested to improve the network training performance. Here, we adopt Empirical Mode Decomposition (EMD) as a data augmentation technique. The intrinsic mode functions (IMFs) produced by EMD are recombined with different weights to obtain surrogate data series, which are used to train a neural network for forecasting. We use M4 time series dataset and a custom nonlinear auto-regressive network with exogenous inputs (NARX) for the validation of the proposed method. The experimental results show an improvement in forecasting accuracy over a baseline method when using EMD based data augmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Capizzi, G., Napoli, C., Bonanno, F.: Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting. IEEE Trans. Neural Netw. Learn. Syst. 23(11), 1805–1815 (2012)

    Article  Google Scholar 

  2. Zȩbik, M., Korytkowski, M., Angryk, R., Scherer, R.: Convolutional neural networks for time series classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, Lotfi A., Zurada, Jacek M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 635–642. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_57

    Chapter  Google Scholar 

  3. Qi, G.-J., Luo, J.: Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods. CoRR abs/1903.11260 (2019)

    Google Scholar 

  4. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: Interdisciplinary PhD Workshop, pp. 117–122. (2018)

    Google Scholar 

  5. Park, D.S., et al.: Specaugment: a simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019)

  6. Eyobu, S.O., Han, D.S.: Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18(9), 2892 (2018)

    Article  Google Scholar 

  7. le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series classification using convolutional neural networks. In: Proceedings of the ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Porto, Portugal (2016)

    Google Scholar 

  8. Um, T.T., et al.: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. In: 19th ACM International Conference on Multimodal Interaction; Glasgow, UK, 13–17 November (2017)

    Google Scholar 

  9. Bergmeir, C., Hyndman, R.J., Benítez, J.M.: Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. Int. J. Forecast. 32(2), 303–312 (2016)

    Article  Google Scholar 

  10. Paparoditis, E., Politis, D.: Tapered block bootstrap. Biometrika 88(4), 1105–1119 (2001)

    Article  MathSciNet  Google Scholar 

  11. Shao, X.: The dependent wild bootstrap. J. Am. Stat. Assoc. 105(489), 218–235 (2010)

    Article  MathSciNet  Google Scholar 

  12. Maiwald, T., Mammen, E., Nandi, S., Timmer, J.: Surrogate data - a qualitative and quantitative analysis. In: Dahlhaus, R., et al. (eds.) Mathematical Methods in Signal Processing and Digital Image Analysis. Understanding Complex Systems. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75632-3_2

  13. Prichard, D., Theiler, J.: Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 73(7), 951–954 (1994)

    Article  Google Scholar 

  14. Kaefer, P.E., Ishola, B.I., Corliss, G.F., Brown, R.H.: Using surrogate data to mitigate the risks of natural gas forecasting on unusual days. In: 35th International Symposium on Forecasting (2015)

    Google Scholar 

  15. Duncan, G.T., Gorr, W.L., Szczypula, J.: Forecasting analogous time series. In: Principles of Forecasting: A Handbook for Researchers and Practitioners, pp. 195–213 (2001)

    Google Scholar 

  16. Schreiber, T., Schmitz, A.: Surrogate time series. Physica D 142, 346–382 (1999)

    Article  MathSciNet  Google Scholar 

  17. Sidekerskienė, T., Woźniak, M., Damaševičius, R.: Nonnegative matrix factorization based decomposition for time series modelling. In: Saeed, K., Homenda, W., Chaki, R. (eds.) CISIM 2017. LNCS, vol. 10244, pp. 604–613. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59105-6_52

    Chapter  Google Scholar 

  18. Sidekerskiene, T., Damasevicius, R., Wozniak, M.: Zerocross density decomposition: a novel signal decomposition method. In: Dzemyda, G., et al. (eds.) Data Science: New Issues, Challenges and Applications. Studies Comp. Intelligence, vol. 869 (2020)

    Google Scholar 

  19. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454(1971), pp. 903–995 (1998)

    Google Scholar 

  20. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020)

    Article  Google Scholar 

  21. Horzyk, A., Starzyk, J.A.: Associative data model in search for nearest neighbors and similar patterns. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 933–940. IEEE, December 2019

    Google Scholar 

  22. Shewalkar, A., Nyavanandi, D., Ludwig, S.A.: Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 9(4), 235–245 (2019)

    Article  Google Scholar 

  23. Nobukawa, S., Nishimura, H., Yamanishi, T.: Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity. J. Artif. Intell. Soft Comput. Res. 9(4), 283–291 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge contribution to this project of the Program “Best of the Best 4.0” from the Polish Ministry of Science and Higher Education No. MNiSW/2020/43/DIR/NN4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Połap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abayomi-Alli, O.O., Sidekerskienė, T., Damaševičius, R., Siłka, J., Połap, D. (2020). Empirical Mode Decomposition Based Data Augmentation for Time Series Prediction Using NARX Network. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics