Skip to main content

Building Best Predictive Models Using ML and DL Approaches to Categorize Fashion Clothes

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12415))

Included in the following conference series:

Abstract

Today Deep learning approach DL becomes the new tendency of machine learning approach ML which is used since it gives much more sophisticated pattern recognition and image classification than classic machine learning approach. Among the most used methods in DL, CNNs are for a special interest. In this work, we have developed an automatic classifier that permits to classify a large number of fashion clothing articles based on ML and DL approaches. Initially, we proceeded to the classification task using many ML algorithms, then we proposed a new CNN model composed of many convolutional layers, one maxpooling layer, and one full connected layer. Finally, we established a comparison between different algorithms. As programming tools, we have used Python, Tensoflow, and Keras which are the most used in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NIPS’2006 (2007)

    Google Scholar 

  3. Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations with an energy-based model. In: NIPS’06 (2007)

    Google Scholar 

  4. Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)

    Google Scholar 

  5. Krizhevsky, A.: Convolutional deep belief networks on cifar-10. Unpublished manuscript (2010)

    Google Scholar 

  6. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems (1990)

    Google Scholar 

  7. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference, vol. 2, pp. II–97. IEEE (2004)

    Google Scholar 

  8. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 609–616. ACM (2009)

    Google Scholar 

  9. Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5(11), e1000579 (2009)

    Article  MathSciNet  Google Scholar 

  10. Turaga, S.C., et al.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)

    Article  Google Scholar 

  11. Abadi, B., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Accessed 1 Nov 2018

  12. Theano Development Team. Theano: a Python framework for fast computation of mathematical expressions (2016). arXiv e-prints arXiv:1605.02688

  13. Chollet, F., et al.: Keras (2015). https://keras.io. Accessed 1 Nov 2018

  14. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  15. Chetlur, S., et al.: cudnn: Efficient primitives for deep learning (2014)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing systems, p. 25 (2012)

    Google Scholar 

  17. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

    Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  21. Wang, X., Zhao, Y., Pourpanah, F.: Recent advances in deep learning. Int. J. Mach. Learn. Cybernet. 11(4), 747–750 (2020). https://doi.org/10.1007/s13042-020-01096-5

    Article  Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Nature 521, 436 (2015)

    Article  Google Scholar 

  23. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Net. 61, 85–117 (2015)

    Article  Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533 (1986)

    Article  Google Scholar 

  25. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  26. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  27. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS’06, pp. 153–160. MIT Press, Cambridge (2016)

    Google Scholar 

  28. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  29. Kumar, M.: An incorporation of artificial intelligence capabilities in cloud computing. Int. J. Eng. Comput. Sci. (2016). https://doi.org/10.18535/ijecs/v5i11.63

  30. Saiyeda, A., Mir, M.A.: Cloud computing for deep learning analytics: a survey of current trends and challenges. Int. J. Adv. Res. Comput. Sci. 8(2), 68–72 (2017)

    Google Scholar 

  31. Dumbill, E.: What is big data?: an introduction to the big data landscape (2012). http://radar.oreilly.com/2012/01/what-is-big-data.html

  32. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1–21 (2015). https://doi.org/10.1186/s40537-014-0007-7

    Article  Google Scholar 

  33. Hinton, G., Salakhutdinov, R.: Discovering binary codes for documents by learning deep generative models. Top Cogn. Sci. 3(1), 74–91 (2011)

    Article  Google Scholar 

  34. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approx. Reason. 50(7), 969–978 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Gadri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadri, S., Neuhold, E. (2020). Building Best Predictive Models Using ML and DL Approaches to Categorize Fashion Clothes. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics