Skip to main content

Guess What I’m Doing!

Rendering Formal Verification Methods Ripe for the Era of Interacting Intelligent Systems

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Applications (ISoLA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12478))

Included in the following conference series:

Abstract

Emerging smart technologies add elements of intelligence, cooperation, and adaptivity to physical entities, enabling them to interact with each other and with humans as systems of (human-)cyber-physical systems or (H)CPSes. Hybrid automata, in their various flavours, have been suggested as a formal model accurately capturing CPS dynamics and thus facilitating exhaustive behavioural analysis of interacting CPSes with mathematical rigour.

In this article, we demonstrate that despite their expressiveness, all flavours of hybrid automata fall short of being able to accurately capture the interaction dynamics of systems of well-engineered, rationally acting CPS designs. The corresponding verification verdicts obtained on the best possible approximations of the actual CPS dynamics are across the range of hybrid-automata models bound to be either overly optimistic or overly pessimistic, i.e., imprecise.

We identify inaptness to accurately represent rational decision-making under uncertain information as the cause of this deficiency. Such rational decision-making requires manipulation of state distributions representing environmental state estimates within the system state itself. We suggest a corresponding extension of hybrid automata and discuss the problem of providing automatic verification support.

This research was supported by Deutsche Forschungsgemeinschaft through the grants DFG GRK 1765 “System Correctness under Adverse Conditions” and FR 2715/4-1 “Integrated Socio-technical Models for Conflict Resolution and Causal Reasoning”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that this is a toy example ignoring all maritime rules such as COLREGs.

  2. 2.

    For simplicity, we are assuming a discrete-time model here.

  3. 3.

    We are adding quotes here, as the “probability” assigned to a given label by a DNN classifier does not constitute a probability in a frequentistic sense or according to other conventional interpretations of probability theory.

References

  1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

    Chapter  Google Scholar 

  2. Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 317–356. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_35

    Chapter  Google Scholar 

  3. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1_16

    Chapter  MATH  Google Scholar 

  4. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45352-0_5

    Chapter  Google Scholar 

  5. Davis, M.: Markov Models and Optimization. Chapman and Hall, London (1993)

    Book  Google Scholar 

  6. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_13

    Chapter  MATH  Google Scholar 

  7. Kowalewski, S., et al.: Hybrid automata. In: Lunze, J., Lamnabhi-Lagarrigue, F., (eds.) Handbook of Hybrid Systems Control: Theory, Tools, Applications, pp. 57–86. Cambridge University Press (2009)

    Google Scholar 

  8. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: Caccamo, M., Frazzoli, E., Grosu, R. (eds.) Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA, 12–14 April 2011, pp. 43–52. ACM (2011)

    Google Scholar 

  9. Bujorianu, L., Lygeros, J.: Toward a general theory of stochastic hybrid systems. In: Blom, H.A.P., Lygeros, J. (eds.) Stochastic Hybrid Systems. Lecture Notes in Control and Information Science, vol. 337, pp. 3–30. Springer, Heidelberg (2006). https://doi.org/10.1007/11587392_1

  10. Kálmán, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  11. Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  12. Fränzle, M., Chen, M., Kröger, P.: In memory of Oded Maler: automatic reachability analysis of hybrid-state automata. SIGLOG News 6(1), 19–39 (2019)

    Article  Google Scholar 

  13. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  14. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  15. Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Inference in hybrid Bayesian networks. Reliab. Eng. Syst. Saf. 94(10), 1499–1509 (2009)

    Article  Google Scholar 

  16. Mahler, R.P.S.: Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003)

    Article  Google Scholar 

  17. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  18. Coué, C., Pradalier, C., Laugier, C., Fraichard, T., Bessiere, P.: Bayesian occupancy filtering for multitarget tracking: an automotive application. Int. J. Robot. Res. 25(1), 19–30 (2006). http://emotion.inrialpes.fr/bibemotion/2006/CPLFB06/

  19. Combastel, C.: Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment. IFAC-PapersOnLine 48(21) 289–295 (2015). 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015

    Google Scholar 

  20. Sherlock, C., Golightly, A., Gillespie, C.S.: Bayesian inference for hybrid discrete-continuous stochastic kinetic models. Inverse Prob. 30(11), 114005 (2014)

    Article  MathSciNet  Google Scholar 

  21. Murphy, K.P.: Switching Kalman filters. Technical report (1998)

    Google Scholar 

  22. Lavretsky, E.: Robust and adaptive control methods for aerial vehicles. In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 675–710. Springer, Dordrecht (2015). https://doi.org/10.1007/978-90-481-9707-1_50

    Chapter  Google Scholar 

  23. Gambier, A.: Multivariable adaptive state-space control: a survey. In: 2004 5th Asian Control Conference (IEEE Cat. No. 04EX904), vol. 1. pp. 185–191, July 2004

    Google Scholar 

  24. Narendra, K.S., Han, Z.: Adaptive control using collective information obtained from multiple models. IFAC Proc. 44(1) 362–367 (2011). 18th IFAC World Congress

    Google Scholar 

  25. Ding, J., Abate, A., Tomlin, C.: Optimal control of partially observable discrete time stochastic hybrid systems for safety specifications. In: 2013 American Control Conference, pp. 6231–6236, June 2013

    Google Scholar 

  26. Fränzle, M., Kröger, P.: The demon, the gambler, and the engineer. In: Jones, C., Wang, J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid Systems. LNCS, vol. 11180, pp. 165–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01461-2_9

    Chapter  Google Scholar 

  27. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9

    Chapter  MATH  Google Scholar 

  28. Abate, A., Katoen, J., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010)

    Article  MathSciNet  Google Scholar 

  29. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17

    Chapter  MATH  Google Scholar 

  30. Berntorp, K., Di Cairano, S.: Particle filtering for automotive: a survey. In: 22nd International Conference on Information Fusion, pp. 1–8, July 2019

    Google Scholar 

  31. Damm, W., Fränzle, M., Lüdtke, A., Rieger, J.W., Trende, A., Unni, A.: Integrating neurophysiological sensors and driver models for safe and performant automated vehicle control in mixed traffic. In: 2019 IEEE Intelligent Vehicles Symposium, pp. 82–89. IEEE (2019)

    Google Scholar 

  32. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): HS 1991-1992. LNCS, vol. 736. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fränzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fränzle, M., Kröger, P. (2020). Guess What I’m Doing!. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Applications. ISoLA 2020. Lecture Notes in Computer Science(), vol 12478. Springer, Cham. https://doi.org/10.1007/978-3-030-61467-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61467-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61466-9

  • Online ISBN: 978-3-030-61467-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics