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Abstract. This paper investigates the use of k -induction with RT-Tester
for tackling the challenge of verifying the safety of a distributed railway
interlocking system. For a real-world case study, it is described how a
generic and reconfigurable model of the system is modelled in a new ex-
tension of the RAISE Specification Language (RSL). The generic model
is instantiated with concrete data sets and subsequently model checked
with respect to safety properties using the k -induction facilities in RT-
Tester. The performance metrics of the verification with k -induction are
additionally compared with the metrics of verifying the same system
model with the SAL model checker.

Keywords: model checking, RAISE, railway interlocking systems, dis-
tributed systems, k -induction, RT-Tester

1 Introduction

This paper considers how to use k -induction to tackle the challenge of formally
verifying the safety of a real-world geographically distributed interlocking sys-
tem, RELIS 2000. This system was originally developed by INSY GmbH Berlin
and first described in [14].

Railway interlocking systems are responsible for controlling the track side
equipment and granting movement authorities to trains in a railway network such
that derailments and collisions of trains are avoided. Traditionally, such systems
are centralised. The interlocking system we consider in this paper, however, is
geographically distributed: there are multiple control components which have
been deployed at specific points along the tracks and in the trains, respectively.
The control components must communicate and collaborate to control the track
side equipment and grant movement authorities to trains in a safe manner.

We have previously investigated the formal specification and model checking
of this interlocking system [13]. We used a stepwise development method where
we incrementally added details to the model specification. For the verification of
the interlocking system we used model checking, since the verification process is
fully automated with this method.

We were using RSL?, an extension to RSL-SAL, which itself is an extension
of RSL – the RAISE Specification Language [20]. RSL is a formal specification
language, allowing several different styles of formulating modular specifications.



RSL-SAL [19] extends the functionality of RSL with constructs for the specifica-
tion of transition systems in a guarded command style. RSL-SAL specifications
can be translated by the RSL tool set (rsltc) and subsequently model checked
using the SAL model checker [2]. Therefore, we used the SAL model checker as
a proof of concept, but found that the scalability was limited in terms of for how
large railway networks the model could be verified.

In a previous study [23], k -induction with RT-Tester [18, 22] was used for
proving the safety of a centralised interlocking system with great efficiency and
scaling. Our goal in this paper is to investigate whether the scalability of the
verification of the distributed interlocking system in [13] can also be improved
by using k -induction.

Therefore, we have equipped rsltc with functionality for translating RSL?
specifications into model representations in RT-Tester such that k -induction
with RT-Tester can be used to prove the safety of models of the distributed
interlocking system considered in [13].

1.1 Related Work

Formal verification of railway interlocking systems is a well-researched topic. An
overview of recent trends can be found in [4, 9].

Centralised systems are the tradition for railway interlocking, and therefore
a great part of the literature on formal verification of interlocking systems fo-
cuses on these. However, there are sources which cover the formal verification of
distributed interlocking systems: The case study considered in this paper, was
previously investigated in [14], but the behavioural model in [14] was expressed
using the RSL process algebra instead of the RSL? guarded command language
that we are using, and the verification used the RAISE theorem prover rather
than model checking. Another example can be found in [11], where a geographi-
cally distributed railway interlocking system was formally modelled and verified
using the UMC model checker [1, 6], although with a very different control pro-
tocol than the one used in this paper. A discussion of advantages and challenges
of distributed interlocking can be found in [10].

The k -induction technique with RT-Tester that we are exploring is the same
as used by Vu et al. in [23], but they used it for verifying a centralised interlocking
system, and the modelling language was not a general-purpose language like
RSL?, but a domain-specific railway modelling language.

There are examples of using many other model checking tools such as Simu-
link and UPPAAL ([5]), SPIN and nuSMV ([12]), proB ([3]), mCRL2 ([7]), and
FDR ([16]) for the verification of railway control systems. For a comparative
study, see [15].

1.2 Paper Overview

In Sect. 2, we introduce the background for the verification scheme. In Sect. 3,
we introduce the case study under consideration in this paper, and in Sect. 4,



we outline the generic model specification we have created of the interlocking
system from the case study. Sect. 5 presents our verification efforts and discusses
the scalability of our verification approach. Finally, Sect. 6 gives a conclusion and
ideas for future work.

2 RT-Tester and k-induction

In this section we introduce some mathematical foundations for the applied
verification approach. We briefly explain how a system model can be expressed
and then describe the k -induction verification scheme.

Model representations in RT-Tester. In RSL? a system model is specified
by a set of variable declarations (defining the state space), an initialisation con-
straint and a collection of transition rules in guarded command style. Using rsltc,
such a system model can be translated to RT-Tester’s [22] internal representa-
tion, where the model is expressed as a Kripke structure. In the Kripke structure,
the initial state and the transition relation are expressed in propositional form
over the states of the system:
I(s0) is a proposition which holds for a state s0, if s0 is an initial state.
Φ(s, s′) is a proposition which holds for a pair of states (s, s′), if there is a

transition from s to s′ in the model.

k-induction. k -induction [17, 21] is a verification scheme which can be used to
prove a state invariant φ in two steps: a base case and an induction step, both
of which can be formulated as bounded model checking problems. This makes
it possible to use RT-Tester’s integrated bounded model checker to perform k -
induction.1

In the base case, it should be proved that the property φ holds in every state
of every acyclic path of length k > 0 starting from every initial state. This is
formulated as a bounded model checking problem by searching for violations of
the base case, i.e. searching for a witness for the following formula:

I(s0) ∧ π=(s0, . . . , sk−1) ∧ ¬
k−1∧
i=0

φ(si) (1)

where π=(s0, . . . , sk−1) is a proposition expressing that s0, . . . , sk−1 is an acyclic
path in the model, and φ(si) denotes that φ holds in the state si. Thus, if a
solution is found, there is a state which is reachable within k steps from one of
the initial states and which does not satisfy φ.

In the induction step, it should be proved that if φ holds in every state of
every acyclic path of length k > 0 starting from an arbitrary state, then φ also

1The facilities in RT-Tester that enable k -induction were originally developed by
Linh Hong Vu in collaboration with Jan Peleska and his team [23] based on the work
presented in [17, 21] and using the bounded model checker of RT-Tester.



holds in any k + 1th state. This is formulated as a bounded model checking
problem by searching for violations of the induction step, i.e. searching for a
witness for the following formula:

π=(sn, . . . , sn+k) ∧
k−1∧
i=0

φ(sn+i) ∧ ¬φ(sn+k) (2)

If a solution is found, there is a path of length k + 1 for which φ holds for the
first k states, but not for the last state in the path.

If violations are neither found for the base case nor for the induction step
(i.e. no witness was found for either of the above formulae), φ is an invariant.

If a violation is found in the base case, φ is not an invariant.
If a violation is found in the induction step, this might be a false negative, if

the considered path starts in an unreachable state. To eliminate such spurious
violations, one can (1) define a strengthening invariant ψ that is not satisfied in
that unreachable start state, and then try to prove φ∧ψ instead of just φ, or (2)
one can re-try the induction with a higher value of k (incremental k -induction).

Incremental k -induction works by first attempting to prove the base case
starting at k = 1 and, if this is successful, attempting to prove the induction
step for the same k. If the induction step fails, the value of k is incremented by
one and the attempt to prove the base case and the induction step is repeated
for the new value of k. The proof terminates unsuccessfully if the base case fails
(or if the upper limit set for k is reached). The proof terminates successfully
when the base case and induction step are proved for some value of k.

In principle, the incremental approach has the advantage that the process
is automated. However, for some systems, with this approach k will reach such
large values that it will take too much memory or unreasonably long time to
explore the necessary subset of the state space. In such cases, it will be more
efficient to invent and use strengthening invariants such that a lower value of k
(e.g. k = 1) can be used.

3 Case Study

This section presents the considered interlocking system from [14]. This descrip-
tion of the case study is from [13].

The control strategy of the system must ensure the safety of the system by
preventing derailment and collision of trains. In this engineering concept, safety
is achieved by only allowing one train on each track segment at the same time
and ensuring that points are locked in correct position while trains are passing
them. To this end, trains must reserve track segments before entering them and
lock points in correct position before passing them.

The control components of the system are responsible for implementing the
control strategy. Each train is equipped with a train control computer. In the rail-
way network, several switchboxes are distributed, each associated with a single
point or an endpoint of the network. These components communicate with each



other in order to collaboratively control the system. Each control component has
its own, local state space for keeping track of the relevant information. As can be
seen from Fig. 1, each of the train control computers has information about the
train’s route (a list of track segments) with its switchboxes, the train position,
and the reservations and locks it has achieved. Each switchbox has information
about its associated sensor (used to detect whether a train is passing the critical
area close to the point), which segments are connected at its associated point (if
any), for which train the point is locked (if any), and for which train each of the
associated segments is reserved (if any).

T1

Route segments S1, S2, S4
Route switchboxes SB1, SB2, SB3
Position S1
Reservations SB1:{S1}
Locks –

T2

Route segments S4, S3, S1
Route switchboxes SB2, SB1, SB0
Position S4
Reservations SB2:{S4}
Locks –

SB0 SB1 SB2 SB3

S1 S2 S4

S3

SB0

Connected S1
Res S1 –
Locked by –
Sensor passive

SB1

Connected S1-S3
Res S1 T1
Res S2 –
Res S3 –
Locked by –
Sensor passive

SB2

Connected S2-S4
Res S4 T2
Res S2 –
Res S3 –
Locked by –
Sensor passive

SB3

Connected S4
Res S4 –
Locked by –
Sensor passive

Fig. 1. An example system, adapted from [13].

The basic idea of the control strategy is as follows:

1. Permission to enter a segment: For a train control computer (TCC) to decide
whether it is legal to enter the next segment of its route, the TCC must
observe its local state space and check whether it has the needed reservations
and locks. More precisely, the following must hold:

– the next segment must have been reserved for the train at the two up-
coming switchboxes, and

– the point must have been switched in the direction for the train route
and locked for the train at the next switchbox.

In the scenario shown in Fig. 1, for the train T1, this means that it must
have reservations for segment S2 at both the switchboxes SB1 and SB2,



and a lock for the point at SB1, and S1 must be connected to S2 at SB1,
before it can be allowed to enter S2.

2. Making reservations and locks: Reservations and locks are made by the trains
by issuing requests to the relevant switchboxes. Depending on its local state,
a switchbox may or may not comply with a request from a train. The switch-
box can only fulfil a segment reservation request if the segment is not already
reserved at the switchbox. Similarly, a switchbox can only lock a point (after
potentially having switched the point in the direction for the train route),
if the point is not already locked. Additionally, a request for locking a point
can only be made if the train has reservations for the two segments in its
route on either side of the point to be locked. In the scenario shown in Fig. 1,
for the train T1, this means that it must have a reservation for segments S1
and S2 at the switchbox SB1, before it can request to switch and lock the
point at SB1.
If a switchbox can meet a request, it will update its state space accordingly.
In any case, the switchbox will send a response to the train, based on which
the train can determine whether the request has been met and, thereby,
whether the train should update its state space as well.

3. Release of reservations and locks: When a train enters the critical area of a
switchbox, the sensor associated with the switchbox will become active, and
when the train later leaves the critical area of the switchbox, the sensor will
become passive which in turn causes both the lock and reservations for that
train at that switchbox to be released in the state space of the switchbox.
When the train leaves the critical area of the switchbox, also the lock and
reservations at that switchbox will be released in the state space of the train.

4 Generic Model and Verification Obligations

In this section, we will outline the model specification of the distributed inter-
locking system and the specification of proof obligations. The interlocking system
is modelled as a generic model, which can later be instantiated with configura-
tion data. An example instantiation of the full model corresponding to Fig. 1
can be found online.2

The specification can be divided into several different parts:

– Types for the network configuration data.
– Types and values for the static control component data.
– Types and state variables for the dynamic control component data.
– Interface and communication variables.
– Transition system rules.
– Functions for describing invariants of the system.

2https://github.com/raisetools/rslstar/tree/master/spec-examples/

dracos/discorail2020



The verification obligations (expressing the safety properties and other desired
invariants) are specified as LTL assertions, which use the functions describing
invariants of the system.

In Sect. 4.1 we give a brief overview of the adaptations we have made to
the model from [13]. Then, in the following sections, we will elaborate on the
different parts of the adapted model and the verification obligations.

Note that the original transition system model in [13] was developed in a
stepwise manner and with translation to SAL in mind. More details about this
can be found in our paper [13]. The final model of the stepwise development
process resulted in the specification of a control system adhering to a just-in-time
allocation principle, where each train can only make the immediately necessary
reservations and locks at any point in time. This means that the train must only
make reservations of its next segment (at the two upcoming switchboxes along
its route) and that it must only lock the point at the next upcoming switchbox.
It is this variant of the control algorithm that we are considering in this paper.

4.1 Overview of Adaptations

Since the subset of RSL? translatable to SAL differs from the subset translatable
to RT-Tester, it has been necessary to adapt the original specification from [13]
in order to be able to translate it into RT-tester. For instance, the original
specification uses RSL? maps and sets which are translatable to SAL, but not to
RT-Tester. These data structures have been replaced with RSL? arrays, which
are translatable to RT-Tester. As arrays can also be translated to SAL, it has
actually been possible to create a specification which is translatable both to RT-
Tester and to SAL, allowing us to compare the performance results from both
model checkers on the same system model.

In order to use less space for data, we also made some additional adaptions
of the model.

4.2 Network Configuration Data

The network configuration consists of data about the segments, switchboxes and
trains in the network. Each segment, switchbox and train is given a unique iden-
tifier by specifying a type for each of them. In the generic model, the types are
not further specified, but the intention is that the types enumerate the concrete
identifiers for each component when the model is instantiated. Each identifier
type must at least include a special none value: seg none for segments, sb none
for switchboxes and t none for trains. For each of the types, we also specify
subtypes which do not include the special none values.

type
SegmentID == seg none | ,
SegmentID prime = {| s : SegmentID • s 6= seg none|}
SwitchboxID == sb none | ,
SwitchboxID prime = {| sb : SwitchboxID • sb 6= sb none |}



TrainID == t none | ,
TrainID prime = {| t : TrainID • t 6= t none |},

4.3 Static Control Component Data

In Sect. 3, we introduced the information that each switchbox and each train
must keep track of. Some of this data is static: the route information for each
train in the network and segments adjacency information for each switchbox
in the network. In the generic model, this static data is modelled by generic
constants. For instance, the following declaration states that for each train t in
the type TrainID prime (i.e. for each train in the network), there is a constant
route [ t ] storing the train’s route (of type Route).

value
route[t : TrainID prime] : Route

The type Route is defined as follows:

type
Route = array RouteIndex of SegmentID,
RouteIndex = {| i : Int • i ≥ 0 ∧ i < max route length + 1 |}

As it can be seen, a route is modelled as an array of segment identifiers. The
index type of the array, the RouteIndex type, is an integer range from zero to
the maximum route length (the value of which depends on the initialisation of
the model).

To store the segments adjacent to each switchbox, we declare the following
generic variable.

value
sbSegments[sb : SwitchboxID prime] : SbSegments

The type SbSegments is defined as follows:

type
SbSegments = array SbIndex of SegmentID,
SbIndex = {| i : Int • i ≥ 0 ∧ i < 3 |}

The adjacent segments are modelled as an array of segment identifiers. The
index type of the array, the SbIndex type, is an integer range from zero to two
(such that there is an entry for each of the up to three segments with which a
switchbox may be associated).

When the model is instantiated, for each t in TrainID prime, a concrete value
for route [ t ] must be specified, and for each sb in SwitchboxID prime, a concrete
value for sbSegments[sb] must be specified as configuration data.

4.4 Dynamic Control Component Data

Most of the data that the trains and switchboxes must keep track of is dynamic.
The trains store their position, their reservations and locks. The switchboxes



similarly store their reservations and locks along with data about the associ-
ated sensor and information about which of its adjacent segments are currently
connected.

In the generic model, this dynamic data is modelled by generic variables in
a similar way as static data was modelled by generic constants. For instance,
the following generic variable is used for storing reservations at each of the
switchboxes sb.

variable
sbReservations[sb : SwitchboxID prime] : SbReservation

type
SbReservation = array SbIndex of TrainID,
SbIndex = {| i : Int • i ≥ 0 ∧ i < 3 |}

As it can be seen, a switchbox reservation is modelled as an array of TrainIDs
with an index in the same range as used for the SbSegments arrays (such that
there is an entry for each of the up to three segments with which a switchbox
may be associated). Hence, sbReservations [sb ] [ i ] = t models that switchbox sb
has recorded a reservation for train t of the segment which can be found at index
i in the sbSegments[sb] array.

When the generic model is instantiated, initial values for all the resulting
variables must be specified as configuration data.

4.5 Interface and Communication Variables

The control components must collaborate on making reservations and locks, so
they must be able to communicate. The communication between the compo-
nents is modelled as a simple request-acknowledge protocol, where the train is
the initiating party. A train will consider its own state and can send a request to
a switchbox if its state fulfils the requirements. If a switchbox receives a request,
it will consider its own state to decide whether the request can be fulfilled. De-
pending on this, the switchbox sends a positive or negative acknowledgement
to the train. If the switchbox can accommodate the request it will also update
its state accordingly, as will the train when it receives a positive acknowledge-
ment. If the switchbox sends a negative acknowledgement, neither the state of
the switchbox nor the train is updated. We model the communication, i.e. the
requests, acknowledgements and data sent as part of a request, by shared vari-
ables.

We declare three different generic variables to keep track of the requests and
acknowledgements. For example, if a train t has sent a request to a switchbox
sb, then req[t] = sb.

variable
req[t : TrainID prime] : SwitchboxID,
ack[sb : SwitchboxID prime] : TrainID,
nack[sb : SwitchboxID prime] : TrainID



We declare data variables for storing data sent as part of a request – for
example, the segment to be reserved:

variable
reqSeg : SegmentID

In addition, we declare event variables which describe which kind of event is
taking place (reserve at the next switchbox, reserve at the switchbox after the next
switchbox and lock at the next switchbox ). For example, we declare a variable:

variable
reserveNextEvent : Bool

This variable is set to true as soon as a train sends a request for reserving a
segment at its next switchbox. The variable is set to false as soon as the train
has received an acknowledgement (negative or positive).

4.6 Transition System Rules

In RSL*, the possible behaviour of a system is specified by state transition
system rules. Each rule consists of a guard and an effect. The guard is a boolean
expression over the state variables. It determines in which states the effect of
the rule may occur. The effect of the rule is a collection of variable updates of
the form x′ = value, where the primed variable name x′ refers to the variable x
in the post state. Rules may be combined by using the non-deterministic choice
operator debc.

In the specification of our generic model, we use 15 generic transition system
rules. A generic rule is a shorthand for a non-deterministic choice over a set of
rules of the same form, only differing by one or more parameters. For example,
we have the following generic rule expressing for any switchbox sb, the sending
of a positive acknowledgement to a train t that it has reserved the segment at
index i for t:

(debc sb : SwitchboxID prime, t : TrainID prime, i : SbIndex •

[switchbox ack reservation]
(reserveNextEvent ∨ reserveNextNextEvent) ∧ req[t] = sb ∧
sbSegments[sb][i ] = reqSeg ∧
sb can reserve(sbReservations[sb] [ i ] )
−→
ack′ [sb] = t,
req ′ [ t ] = sb none,
sbReservations′ [sb] [ i ] = t

)

This rule represents the non-deterministic choice of the set of rules that
are obtained by replacing the parameters sb, t and i with each of the possible
combinations of the possible concrete values for each parameter.

In the rule effects, an acknowledgement is sent to the train t from the switch-
box sb, the request from the same train is consumed (by setting the variable to
the special value sb none), and the reservations in the same switchbox is updated



to have a reservation for t of the segment at its index i. The guard expresses that
this can only happen if (1) there is a reservation event going on and the train t
has sent a request to the switchbox sb, (2) the segment reqSeg to be reserved is
the one at index i of the switchbox, and (3) the segment is not already reserved.
The latter is expressed by the following auxiliary function:

sb can reserve : TrainID → Bool
sb can reserve(res) ≡ res = t none,

4.7 Safety Invariants

We have specified two safety invariants to be proved. They describe that trains
do not collide and trains do not derail, respectively. The specification of the
former is as follows:

(∀ distinct tid1, tid2 : TrainID prime •

G(no collide(hdPos[tid1], tlPos[ tid1 ] , hdPos[tid2], tlPos[ tid2 ] )))

where hdPos[t ] and tlPos [ t ] is the head, respectively tail, position of a train t3

and no collide is a function defined as follows:

no collide : SegmentID × SegmentID × SegmentID × SegmentID → Bool
no collide (hdPos1, tlPos1, hdPos2, tlPos2) ≡

hdPos1 6= hdPos2 ∧ hdPos1 6= tlPos2 ∧ tlPos1 6= hdPos2 ∧ tlPos1 6= tlPos2

Supplied with the head position and tail position of two distinct4 trains, the
function checks that there are no overlaps in the trains’ position.

4.8 Strengthening Invariants

As a part of the verification process, we have added several strengthening invari-
ants in order to prove the safety invariants by 1-induction.

Many of the strengthening invariants we have added are adaptions of the
consistency properties that we have previously proved for earlier variants of the
system [13]. These invariants express agreement between the train data and the
switchbox data. For example, one of the strengthening invariants express that
each reservation or lock possessed by a train is also found in the reservation-
s/locks of the corresponding switchbox5.

3For the considered local railway, trains are shorter than any segment, so they will
at most occupy two segments at a time.

4The quantification with the distinct keyword generates only distinct combinations
of the parameters – in this case distinct pairs of train identifiers.

5Note that this property is indeed invariant, even though the updates to the train
and switchbox reservations/locks happen in separate transitions, because the update
to switchbox reservations/locks always happens before the update to the train reserva-
tions/locks. Note therefore also that the converse of the property is not invariant and
only holds if the system is not in the middle of making a reservation/lock.



We also added several strengthening invariants relating to the interface vari-
ables used for the communication between train control computers and switch-
boxes. For example, one of the strengthening invariants expresses that a switch-
box never sends both a positive and negative acknowledgement to a train simul-
taneously:

(∀ sb : SwitchboxID prime •

(ack[sb] 6= t none ∨ nack[sb] 6= t none) ⇒ ack[sb] 6= nack[sb])

5 Verification

In this section, we present our experiences using k -induction with RT-Tester to
verify the safety of instances of our generic model. In particular we show the per-
formance metrics (time and memory usage) for verifying the safety properties of
models having configurations of increasing size (in terms of number of stations).
Furthermore, we compare these results with the performance measures for the
same configurations when verifying with the SAL model checker.

The RELIS 2000 system was intended for local railways having stations with
1-2 track segments, each connected by single lines and operated by 2-3 trains.
Therefore, in our verification we consider configurations of the model which are
representative for this class of local railways.

5.1 Bounded Model Checking

Before performing the k -induction, we used bounded model checking for quick
detection of bugs in the considered model instances.

Bounded model checking can be used to find bugs in the specification within
the first n transition steps. Given a bound n, the bounded model checker only
explores the paths of the transition system of lengths up to the bound. Therefore,
bounded model checking can be much quicker than global model checking or k -
induction (with a large k) to find bugs.

Bounded model checking (with a bound ≥ 1) can in particular be used to
check that the initial state (specified in the configuration data) of a certain
model instance adheres to the safety and strengthening invariants. This is espe-
cially useful for large networks, where there is some risk of making errors in the
configuration data.

The bounded model checker can also be used to show that a system pro-
gresses. We used it for proving that there exists at least one path where all
trains can reach their destination, (but there might still be other paths for which
a livelock or a deadlock may occur).6 Selecting a path without deadlocks and
livelocks is a task for the scheduler, rather than for the interlocking system. Our
aim is to ensure that there exists a possible schedule (i.e. at least one path where

6This was done by asserting that it is never the case that all trains have reached
their destination. This is expected to produce a counter-example showing the transition
steps to a state where the trains indeed did reach their destinations.



all trains reach their destinations). For the bound for these experiments, we cal-
culated the minimum number of transition steps needed for all trains to reach
their final destination (for example, it takes three transition steps to finalise a
reservation).

5.2 k-induction

First we tried to use incremental k -induction to verify the safety invariants with-
out any strengthening invariants. Even for a small system instantiation with just
one station (as in Fig. 1), the value of k eventually had to be increased to such a
degree that the base case took an unreasonable amount of time to prove: After
a total of fifty-three hours, the value of k had been increased to fifty-four and
we manually terminated the execution.

Therefore, instead, we decided to add strengthening invariants until we ob-
tained a property that is provable by k -induction with k = 1. As mentioned in
Sect. 2, the strengthening invariants are conjuncted with the safety properties
such that the k -induction should now attempt to prove the safety properties and
the added strengthening invariants. The strengthening invariants were found by
inspecting the counter-examples that resulted from failed induction steps and
taking inspiration from the consistency properties of an earlier variant of the
model [13].

5.3 System Instantiations

As our main goal is to investigate the scalability of using k -induction with RT-
Tester, we have instantiated7 the generic model with configurations of increasing
size (in terms of the number of segments and stations in the network). The
configurations follow the typical patterns of real-world systems in the class of
railway networks we are considering.

Fig. 2. An example of a typical local railway network (from [13]).

For the class of networks we are considering, the configuration pattern illus-
trated in Fig. 2 is very typical. Two trains start at either end of the network
driving in opposite directions and using distinct track segments at the stations
such that they are able to pass each other there (the train routes are illustrated
with lines, where the dashed line is the route of the striped train and the solid
line is the route of the black train). We use instantiations of the system model

7To instantiate a model, configuration data for types, values and variables must be
specified as explained in Sect. 4.2, Sect. 4.3, and Sect. 4.4, respectively.



with configurations of increasing size (with one, two, five, ten, fifteen, and twenty
stations) for comparing the verification performance of SAL and RT-Tester.

Fig. 3. An example of a typical local railway network with an extra train (from [13]).

Another typical configuration pattern is illustrated in Fig. 3, where an ad-
ditional train has been added somewhere between the other two trains which
are starting at each respective end of the network. We also use instantiations
of the system model with configurations following this pattern with ten, fifteen
and twenty stations, respectively.

5.4 Results and Verification Metrics

As mentioned previously, the model can be translated to both RT-Tester and
SAL. This allows us to compare the performance of the two model checkers
when verifying the safety properties of the same model. Note, however, that
the k -induction proves the added strengthening invariants along with the safety
properties, whereas SAL solely proves the two safety properties.

Below we present the time and memory consumption for verifying the safety
properties by k -induction with RT-Tester and with the SAL model checker,
respectively. The results were measured using GNU Time8 on a machine with a
Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz and 31GiB of memory.

We firstly present the verification metrics for the instances following the
configuration pattern shown in Fig. 2, i.e. with two trains driving in opposite
directions from either end of the network. Table 1 shows the time and memory
usage for verifying both of the safety properties with RT-Tester and SAL, re-
spectively. For the smaller instantiations with one and two stations, SAL and
RT-Tester have approximately the same time and memory usage. However, for
the instantiation with five stations RT-Tester uses less than three minutes to ver-
ify the properties, whereas SAL uses more than an hour and a half. The memory
consumption of RT-Tester is also much lower than that of SAL. For the instan-
tiation with ten stations, the SAL execution was terminated by the operating
system after almost seventeen hours due to memory exhaustion. Therefore we
did not attempt to verify the safety of larger instantiations with SAL. In contrast
to that, we successfully verified the properties with RT-Tester for instantiations
with ten, fifteen, and twenty stations.

We now present the verification metrics for the instances following the config-
uration pattern shown in Fig. 3, i.e. with two trains driving in opposite directions

8https://www.gnu.org/software/time/



Table 1. Time (hh:mm:ss) and memory (MB) usage for verifying the safety properties
for the different instances of the system model with the initial state shown in Fig. 2.

Time Memory
# of stations RT-Tester SAL RT-Tester SAL

1 00:00:06 00:00:06 118 113
2 00:00:18 00:00:17 187 165
5 00:02:20 01:42:57 678 5,076
10 00:33:02 * 2,860 *
15 02:10:53 † 7,493 †
20 10:04:09 † 16,232 †

* The execution was terminated by the operating system due to memory exhaustion.
† This experiment was not run.

from either end of the network and a third train starting roughly midway be-
tween the other two trains. Table 2 shows the time and memory consumption
for verifying both of the safety properties with RT-Tester.

As it can be seen, the addition of a third train increased the time and mem-
ory usage. We again successfully verified the properties for instantiations with
ten and fifteen stations, but for twenty stations the execution was this time ter-
minated by the operating system due to memory exhaustion. SAL was not able
to verify any of these instantiations.

Table 2. Time (hh:mm:ss) and memory (MB) usage for verifying the safety properties
for the different instances of the system model with the initial state shown in Fig. 3.

RT-Tester
# of stations Time Memory

10 8:32:11 7,905
15 41:25:47 22,813
20 * *

* The execution was terminated by the operating system due to memory exhaustion.

6 Conclusion and Future Work

In this paper we have shown the specification of a generic system model of a real-
world geographically distributed interlocking system and successfully verified the
safety of model instances representative for the class of local railway networks
for which this interlocking system is intended.

We performed the verification using k -induction with RT-Tester. In order
to make the proof within reasonable time, we found it was necessary to add
several strengthening invariants and make the induction for k = 1 rather than
use incremental k -induction. We successfully verified model instances for typical,
real-world network configurations for the considered local railways.



We also verified the system model with the SAL model checker, and in gen-
eral found k -induction with RT-Tester to be much more efficient – both in terms
of time and memory consumption. The scalability of verifying the distributed in-
terlocking system with RT-Tester was found to be substantially better compared
to the SAL model checker, as it was possible to verify much larger networks with
RT-Tester before reaching memory exhaustion. A main reason for this is that
k -induction is based on bounded model checking. In contrast to this, SAL is
performing global symbolic model checking and thus must explore the full state
space in order to verify properties.

For future work, it would be interesting to automate the addition of strength-
ening invariants, for example using some of the strategies presented in [8]. We
would also like to further optimise the system model in terms of how the data of
the control components is stored and investigate whether the method can scale
to even larger systems. In addition, it would be interesting to investigate k -
induction with RT-Tester for other system models specified in RSL? – of railway
interlocking systems or even other safety-critical systems.
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