
ar
X

iv
:2

10
6.

12
97

3v
1

 [
cs

.P
L

]
 2

4
Ju

n
20

21

Making Tezos smart contracts more reliable with

Coq

Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson,
Basile Pesin, and Julien Tesson

Nomadic Labs, Paris, France
{first name.last name}@nomadic-labs.com

Abstract. Tezos is a smart-contract blockchain. Tezos smart contracts
are written in a low-level stack-based language called Michelson. This
article gives an overview of efforts using the Coq proof assistant to
have stronger guarantees on Michelson smart contracts: the Mi-Cho-Coq
framework, a Coq library defining formal semantics of Michelson, as well
as an interpreter, a simple optimiser and a weakest-precondition calcu-
lus to reason about Michelson smart contracts; Albert, an intermediate
language that abstracts Michelson stacks with a compiler written in Coq
that targets Mi-Cho-Coq.

Keywords: Certified programming · Certified compilation · Program-
ming languages · Blockchains · Smart contracts.

The final authenticated publication is available online at https://doi.org/10.1007/978-3-030-61467-6_5.

1 Introduction

Tezos [15,16,5] is a public blockchain launched in June 2018. An open-source im-
plementation of a Tezos node in OCaml is available [2]. Tezos has smart-contracts
capabilities, a proof-of-stake consensus algorithm, and a voting mechanism that
allows token holders to vote for changes to a subset of the codebase called the
economic protocol. This subset contains, amongst other elements, the voting
rules themselves, the consensus algorithm, and the interpreter for Michelson,
the language for Tezos smart contracts.

Michelson [1] is a stack-based Turing-complete domain-specific language with
a mix of low-level and high-level features. Low-level features include stack manip-
ulation instructions. High-level features are high-level data types (option types,
sum types, product types, lists, sets, maps, and anonymous functions) as well
as corresponding instructions. Michelson is strongly typed: data, stacks and in-
structions have a type. Intuitively the type of a stack is a list of the types of its
values, and the type of an instruction is a function type from the input stack to
the output stack. The combination of high and low level features is the result of a
trade-off between the need to meter resource consumption (computation gas and
storage costs) and the willingness to have strong guarantees on the Michelson
programs.

http://arxiv.org/abs/2106.12973v1
https://doi.org/10.1007/978-3-030-61467-6_5

2 B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson

Michelson has been designed with formal verification in mind: its strong type
system guarantees that there can be no runtime error apart from explicit fail-
ure and gas or token exhaustion. Furthermore, its OCaml implementation uses
GADTs [25] which gives subject reduction for free. In this article, we describe
a couple of efforts using Coq to make Tezos smart contracts more reliable. The
first one is Mi-Cho-Coq, a Coq library that implements a Michelson interpreter,
a weakest precondition calculus enabling the functional verification of Michelson
programs as well as a very simple optimiser.

The second one is Albert, an intermediate language that abstracts Michelson
stacks into records with named variables, for which we have implemented a
compiler in Coq that targets Mi-Cho-Coq. Because of its low-level aspects, it is
hard to write Michelson programs, and as a consequence, higher-level languages
compiling to Michelson, such as LIGO [4] or SmartPy [7] have been developed
in the Tezos ecosystem. Ideally, there would be certified compilers from these
high-level languages to Michelson, and formal proofs of smart-contracts would be
done directly at the higher level and not at the Michelson level, as it is done with
Mi-Cho-Coq. The goal of Albert is to facilitate the implementation of certified
compilers to Michelson by being used as a target for certified compilers from
high-level languages.

This article is organised as follows: in Section 2 we illustrate the Michelson
language with an example, we describe the Mi-Cho-Coq library in Section 3 and
Albert in Section 4. Future and related work is discussed in Section 5.

2 Example of a Michelson contract

The goal of this section is to give the reader an intuitive feeling of the Michelson
language. Our explanations will be illustrated by an example of a Michelson
program, a voting contract, presented in figure 1a. This contract allows any
voter to vote for a predefined set of choices. Voting requires a fee of 5 tez. It is
possible to vote multiple times. The predefined set of choices is the initial storage
chosen at the deployment of the contract. In this example, we assume that we
want to vote for our favourite proof assistant amongst Agda, Coq and Isabelle
(cf. fig. 1b). Initially, each tool has obviously 0 vote.

Smart contracts are accounts that can contain code and storage. Calls to
a smart-contract provokes the execution of the code contained in the account
with the data sent during the transaction as input arguments for the code. The
execution of the code can lead to a modification of the storage, it can also
generate other transactions. The storage must be initialised when the contract
is deployed on the chain.

A Michelson program is thus composed of three fields: storage, parameter
and code that respectively contain types of the storage of the account, of the
parameter that is sent during the transaction, or the code contained in the ac-
count.

In the case of the voting contract, the storage (l.1) is a map from strings to
integers: the keys are the different choices for the vote, the values are the number

Making Tezos smart contracts more reliable with Coq 3

of votes for a given choice. The parameter (l.2) is a string that represents the
ballot that has been chosen by the caller of the contract.

As mentioned in the introduction, Michelson is a stack based language. The
calling convention of Michelson is the following: the initial stack contains one
element that is a pair of which the left member is the parameter sent by the
transaction and the right element is the initial storage. At the end of the ex-
ecution of a Michelson script, the stack must have one element that is a pair
containing on the left a list of operations (e.g. a transaction) that will be exe-
cuted afterwards and on the right the updated storage. Each instruction takes
an input stack and rewrites it into an output stack. In the comments of the
example are written the content of the stack before and after the execution of
some groups of instructions. The program starts by verifying that enough tokens
were sent by the voters. This is implemented in lines 5 to 8. The amount sent
by the voter is pushed to the stack (AMOUNT) followed by the minimum amount
required (5000000 µtez i.e 5 tez). COMPARE pops the two amounts and pushes
1,0,-1 whether the 5 tez threshold is greater, equal or smaller than the amount
sent by the voter. If the threshold is greater then the contract will FAIL: the
execution of the contract is stopped and the transaction is cancelled. Lines 9 to
11 contain stack manipulations that duplicate (with instruction DUP) the ballot
and the current vote count. DIP {code} protects the top of the stack by exe-
cuting code on the stack without its top element. The next block, from line 12
to 18, tries to UPDATE (l.18) the map with an incremented number of votes for
the chosen candidate. This only happens if a candidate is a valid one, that is, if
it is equal to one of the keys of the map. Indeed, in line 13 GET tries to retrieve
the number of votes: it returns None if the chosen candidate is not in the list or
Some i if the candidate is in the list and has i votes. ASSERT_SOME will fail if
None is at the top of the stack and will pop Some i and push i at the top. The
incrementation by one of the number of votes for the chosen candidate is done
in l.15.

3 Mi-Cho-Coq: defining clear semantics of Michelson

Mi-Cho-Coq [8] is a Coq library that contains an implementation of the Michel-
son syntax and semantics as well as a weakest precondition calculus that facil-
itates functioning verification of Tezos smart contracts. Also, we have recently
implemented a certified optimiser that performs basic simplifications of Michel-
son programs.

Mi-Cho-Coq has already been presented in [8] and we refer the reader to this
publication for more details. Here we present Mi-Cho-Coq more succintly and
focus on high-level additions and changes, as the implementation has evolved
significantly.

3.1 Syntax, Typing and Semantics of Michelson in Coq

Syntax and typing The data stored in the stacks have a type defined in the
type inductive. The type of a stack is a list of type. Instructions are defined in

4 B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson

1 storage (map string int); # candidates

2 parameter string; # chosen

3 code {

4 # (chosen, candidates):[]

5 AMOUNT; # amount:(chosen, candidates):[]

6 PUSH mutez 5000000; COMPARE; GT;

7 # (5 tez > amount):(chosen, candidates):[]

8 IF { FAIL } {}; # (chosen, candidates):[]

9 DUP; DIP { CDR; DUP };

10 # (chosen, candidates):candidates:candidates:[]

11 CAR; DUP; # chosen:chosen:candidates:candidates:[]

12 DIP { # chosen:candidates:candidates:[]

13 GET; ASSERT SOME;

14 # candidates[chosen]:candidates:[]

15 PUSH int 1; ADD; SOME

16 # (Some (candidates[chosen]+1)):candidates:[]

17 }; # chosen:(Some (candidates[chosen]+1)):candidates:[]

18 UPDATE; # candidates':[]

19 NIL operation; PAIR # (nil, candidates'):[]

20 }

(a)

{Elt "Agda" 0 ; Elt "Coq" 0 ; Elt "Isabelle" 0}

(b)

Fig. 1: A simple voting contract a and an example of initial storage b

the instruction inductive type. instruction is indexed by the type of the input and
output stacks. This indexing implies that only well-typed Michelson instructions
are representable in Mi-Cho-Coq. 1 A full contract is a sequence of instructions
respecting the calling convention of Michelson mentioned above:

instruction ((pair params storage) :: nil) ((pair (list operation) storage) :: nil).

where storage is the type of the storage of the contract and params the type of its
parameter.

Implementation-wise, Coq’s canonical structures are used to deal with the ad-
hoc polymorphism of some Michelson instructions (e.g ADD that can add integers
to timestamp or mutez or integers). Coq’s notations make contracts’appearance
in Mi-Cho-Coq very close to actual contracts.

Also a lexer, parser and typechecker have been implemented, making it pos-
sible to generate a Mi-Cho-Coq AST from a string representing a Michelson
contract. Support for Michelson entry-points and annotations has been added.

Semantics An interpreter for Michelson has been implemented as an evaluator
eval. Its simplified type is forall {A B : list type}, instruction A B → nat → stack A

1 This is also the case in the OCaml Michelson interpreter via the use of GADTs.

Making Tezos smart contracts more reliable with Coq 5

→ M (stack B). Intuitively the interpreter takes a sequence of instructions and an
input stack and returns an output stack. Since Michelson programs can explicitly
fail the output stack is embedded in an error monad M. A fuel argument is added
to enforce termination of the interpreter. This argument will decrease every time
in any recursive call to eval. Note that the notion of fuel is different from gas,
which measures computation costs.

3.2 Functional verification of Michelson smart contracts

We have verified the functional correctness of Michelson contracts with Mi-Cho-
Coq, including complex ones such as a multisig contract (cf. section 4 of [8])
or a daily spending limit contract 2 used in the Cortez mobile wallet 3. Our
correctness results are statements that condition successful runs of a contract
with the respect of a specification:

Definition correct_smart_contract {A B : stack_type}

(i : instruction A B) min_fuel spec : Prop :=

forall (input : stack A) (output : stack B) fuel,

fuel >= min_fuel input →
eval i fuel input = Return (stack B) output <→
spec input output.

For example, for the voting contract described in section 2, the specification
would be that (preconditions) the amount sent is greater than or equal to 5 tez,
the chosen candidate is one the possible choices and that (postconditions) the
evaluation of the contract generates no operation, and modifies only the votes
count by incrementing by 1 the number of votes of the chosen candidate.

In order to facilitate these functional proofs, a weakest precondition calculus
eval precond is implemented. Its type is forall {fuel A B}, instruction A B → (stack B → Prop) →

(stack A → Prop) that for an instruction and a postcondition (a predicate over
the output stack) returns the weakest precondition (a predicate over the input
stack).

The correctness of eval precond has been proven:

Lemma eval_precond_correct {A B} (i : instruction A B) fuel st psi :

eval_precond fuel i psi st <→
match eval i fuel st with Failed _ _ => False | Return _ a => psi a end.

Intuitively, eval precond correct states that (left to right) the computed by eval precond

is a precondition and that (right to left) it is the weakest. This lemma is heavily
used in the proofs of correctness.

3.3 Optimiser

A Michelson optimiser has been implemented in Mi-Cho-Coq. The purpose of
this optimiser is to simplify Michelson programs, thus reducing the gas costs of

2 https://blog.nomadic-labs.com/formally-verifying-a-critical-smart-contract.html
3 https://gitlab.com/nomadic-labs/cortez-android

https://blog.nomadic-labs.com/formally-verifying-a-critical-smart-contract.html
https://gitlab.com/nomadic-labs/cortez-android

6 B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson

executing them, without modifying their semantics. Simplifications are basic at
the moment: the goal is mainly to clean programs generated from higher level
languages by removing useless stack manipulations instructions.

Optimisations are defined in one file, optimizer.v. A first step (dig0dug0)
removes useless instructions (DROP 0, DIG 0 and DUG 0), needless uses of DIP
(DIP 0 i is replaced with i) and replaces DIG 1 and DUG 1 with SWAP. A second
step (digndugn) removes DIG n; DUG n sequences. A third step (swapswap) re-
moves SWAP ; SWAP sequences. A fourth step (push_drop) removes PUSH ; DROP 1

and rewrites PUSH ; DROP n+1 into DROP n (for n > 0). The visit_instruction
function, similarly to the Visitor Pattern [12], traverses a Michelson sequence of
instructions and applies one optimisation received as an argument. Finally, the
cleanup function applies the four optimisations (in the order of their presenta-
tion above) to a sequence of instructions.

We prove that the semantics of Michelson instructions are preserved by the
optimisations. This is implemented in typed_optimizer.v. The main theorem
optimize_correct states that if an instruction sequence can by typechecked
then its optimised version can also be typechecked with the same type; further-
more if the initial sequence runs successfully on some stack, then the optimised
version runs also successfully on the same stack and they both return the same
value.

4 Albert

Albert is an intermediate language for Tezos smart contracts with a compiler
written in Coq and that targets Mi-Cho-Coq.

We present in this section a high level overview of Albert’s design and fea-
tures. A more detailed presentation of Albert’s syntax, typing rules and seman-
tics can be found in [9].

4.1 Design overview

The key aspect of Albert’s design is the abstraction of Michelson stacks by
records with named fields. This gives two practical benefits: unlike in Michelson,
in Albert we do not need to care about the order of the values and we can bind
variables to names. Also, unlike Michelson where contracts can only contain one
sequence of instructions, it is possible in Albert to define multiple functions, thus
giving the possibility to implement libraries. An important limitation of Albert
is that resources are still being tracked: variables are typed by a linear type
system that enforces that each value cannot be consumed twice. A dup operation
duplicates resources that need to be consumed multiple times. A next step would
be to generate these operations in order to abstract data consumption.

In a nutshell, each expression or instruction is typed by a pair of record
types whose labels are the variables touched by the instruction or expression.
The first record type describes the consumed values and the second record type
describes the produced values. Thanks to the unification of variable names and

Making Tezos smart contracts more reliable with Coq 7

record labels, records in Albert generalise both the Michelson stack types and
the Michelson pair type.

Albert offers slightly higher-level types than Michelson: records generalise
Michelson’s pairs and non-recursive variants generalise Michelson’s binary sum
types as well as booleans and option types. Variants offer two main operations to
the user: constructing a variant value using a constructor, and pattern-matching
on a variant value.

The semantics of the Albert base language is defined in big-step style.
We present in figure 2 the translation in Albert of the voting contract de-

scribed in section 2. The storage of the contract is a record with two fields: a
threshold that represents the minimum amout that must be transferred, and
an associative map, votes, with strings as keys (the options of the vote) and
integers as values (the number of votes for each associated key). The contract
contains a vote function that checks that the parameter sent is one of the avail-
able options, fails if not and otherwise updates the vote count. The main function
guarded_vote verifies that the amount of tokens sent is high enough and if so,
calls vote.

4.2 Implementation overview

Albert is formally specified with the Ott tool [24] in a modular way (one .ott

file per fragment of the language). From the Ott specification the Albert lexer
and parser as well as typing and semantic rules are generated in Coq. The
type checker is a Coq function that uses an error monad to deal with ill-typed
programs. There is no type inference, which should not be a problem since Albert
is supposed to be used as a compilation target.

The Albert compiler is written in Coq, as a function from the generated
Albert grammar to the Michelson syntax defined in Mi-Cho-Coq. The compiler
is extracted to OCaml code, which is more efficient and easier to use as a library.
Compilation of types, data and instructions are mostly straightforward, apart
from things related to records or variants. Records are translated into nested
pairs of values, variants into a nesting of sum types. Projections of record fields
are translated into a sequence of projections over the relevant components of a
pair. Pattern matching over variants are translated into a nesting of IF_LEFT
branchings. A mapping from variable names to their positions in the stack exists
at every point in the program. This mapping is currently naive, variables are
ordered by the lexicographic order of their names. This mapping is used in the
translation of assignment instructions.

5 Future and related work

5.1 Towards stronger guarantees in the OCaml Michelson

interpreter

The OCaml implementation of Tezos contains an interpreter for Michelson. This
interpreter is implemented with GADTs in a way that gives subject reduction

8 B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson

1 type storage ty = { threshold : mutez; votes: map string nat }
2
3 def vote :
4 { param : string ; store : storage ty } →
5 { operations : list operation ; store : storage ty } =
6 {votes = state; threshold = threshold } = store ;
7 (state0, state1) = dup state;
8 (param0, param1) = dup param;
9 prevote option = state0[param0];

10 { res = prevote } = assert some { opt = prevote option };
11 one = 1; postvote = prevote + one; postvote = Some postvote;
12 final state = update state1 param1 postvote;
13 store = {threshold = threshold; votes = final state};
14 operations = ([] : list operation)
15
16 def guarded vote :
17 { param : string ; store : storage ty } →
18 { operations : list operation ; store : storage ty } =
19 (store0, store1) = dup store;
20 threshold = store0.threshold;
21 am = amount;
22 ok = am >= threshold0;
23 match ok with
24 False f →failwith ”you are so cheap!”
25 | True t →drop t;
26 voting parameters = { param = param ; store = store1 };
27 vote voting parameters
28 end

Fig. 2: A voting contract, in Albert

Making Tezos smart contracts more reliable with Coq 9

for free: well-typed Michelson programs cannot go wrong: with the calling con-
vention, we have the guarantee that well-typed programs will always be executed
with stacks of the right length with data of the right type.

Nonetheless, because of the limitations of the logic implemented in OCaml,
we are unable to reason directly about this interpreter. In this section, we sketch
two possible solutions to this problem that we are currently exploring.

From Coq to OCaml An obvious solution is to use Coq’s extraction to pro-
duce OCaml code. Coq’s extraction mechanism relies on well-studied theoretical
grounds [20,21], has been implemented for many years [19,18] and has even been
partially certified [13,14]. However, OCaml code produced by Coq’s extraction
can contain Obj.magic to circumvent OCaml’s less expressive type-system. That
is in particular the case for Coq code that uses dependent types, such as Mi-
Cho-Coq’s interpreter.

Replacing the current OCaml Michelson interpreter with an extracted version
containing Obj.magic occurrences would be problematic. The Michelson inter-
preter is part of the economic protocol which is sandboxed by a small subset of
OCaml modules that, for obvious safety reasons, does not contain Obj.magic.
Lifting this restriction would lower the guarantees provided by the OCaml type
system and is not a path we would like to take.

A better solution would be to implement a second Michelson interpreter in
Coq that would use simpler types so that its extraction is safe and compiles in
the economic protocol sandboxing environment. In this second implementation,
instructions’ types would not be indexed by the input and output stacks and, as a
consequence, the interpreter would be much more verbose, as all the ill-cases (e.g.
executing ADD on a stack with only one element) would need to be dealt with.
Proofs of equivalence between the typed interpreter and untyped interpreter
would be needed, as the reference implementation would be the typed one, that
uses dependent types, as the use of richer types would make it safer. It is also
worth noting that any changes to the Michelson interpreter have to be approved
by a community vote as it is part of the economic protocol that can be amended.

From OCaml to Coq with coq-of-ocaml A reverse approach is to use the
coq-of-ocaml [10] tool to mechanically translate the OCaml Michelson interpreter
into Coq code and then to manually prove in Coq the equivalence of the two
interpreters.

coq-of-ocaml [10] is a work in progress effort to compile OCaml code to Coq.
As a simple example to illustrate coq-of-ocaml, let us consider a polymorphic
tree and a sum function that sums the values of a tree of integers. The OCaml
code and its coq-of-ocaml translations are respectively in figure 3) and figure 4.
Notice that in Coq, the type of the values stored in the trees appears in the type
of the tree, as the rich type system of Coq does not allow this to remain implicit.
It is possible to reason about the generated Coq program. For example one could
prove manually that the sum of a tree containing only positive integers is positive
(5). The Michelson interpreter is much more complex than this simple example

10 B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson

1 type 'a tree =
2 | Leaf of 'a
3 | Node of 'a tree ∗ 'a tree
4
5 let rec sum tree =
6 match tree with

7 | Leaf n → n
8 | Node (tree1, tree2) → sum tree1 + sum tree2

Fig. 3: Sum of a tree, in OCaml

1 Inductive tree (a : Type) : Type :=
2 | Leaf : a → tree a
3 | Node : (tree a) → (tree a) → tree a.
4
5 Arguments Leaf { }.
6 Arguments Node { }.
7
8 Fixpoint sum (tree : tree Z) : Z :=
9 match tree with

10 | Leaf n ⇒ n
11 | Node tree1 tree2 ⇒ Z.add (sum tree1) (sum tree2)
12 end.

Fig. 4: Sum of a tree, in Coq

1 Inductive pos : tree Z → Prop :=
2 | PosLeaf : forall z, z > 0 → pos (Leaf z)
3 | PosNode : forall t1, t2, pos t1 → pos t2 → pos (Node t1 t2).
4
5 Fixpoint positive sum (t : tree Z) (H : pos t) : sum t > 0.
6 Proof.
7 destruct H; simpl.
8 − trivial.
9 − assert (sum t1 > 0).

10 now apply positive sum.
11 assert (sum t2 > 0).
12 now apply positive sum.
13 lia.
14 Qed.

Fig. 5: The sum of a positive tree is positive, manual proof in Coq

Making Tezos smart contracts more reliable with Coq 11

and makes a heavy use of advanced OCaml features, such as GADTs. At the
moment of writing, features such as side-effects, extensible types, objects and
polymorphic variants, are not supported yet by coq-of-ocaml. Regarding GADTs,
currently coq-of-ocaml translates them but in a way that generates axioms for
casting. Work is being done to try to have an axiom-free translation. We have
managed to translate the whole economic protocol of the Babylon4 version of
Tezos into Coq using coq-of-ocaml with the caveat that Coq axioms are needed
and that OCaml annotations were added. As the Michelson interpreter is part
of the economic protocol, this means we have a Coq translation of the OCaml
interpreter. A next step would be to prove the equivalence of the translated
interpreter with the Mi-Cho-Coq one.

5.2 Improvements to Mi-Cho-Coq and Albert

Mi-Cho-Coq Mi-Cho-Coq has axioms for domain specific opcodes that are
harder to implement such as instructions to query the blockchain environment for
relevant information (amount sent during the transaction, current time, sender
of the transaction,. . .), data serialisation and cryptographic primitives. Work is
being done to decrease the number of axioms being used. Another useful addition
would be to extend the expressivity of the framework by supporting mutual calls
and calls to other contracts, as well as reasoning on the lifetime of a contract.
Another issue that would need to be dealt with would be to implement the gas
model in Mi-Cho-Coq. A better or longer term solution would be to replace gas
accounting with static computation of execution costs à la Zen Protocol [3].

Albert Albert is very much a work in progress. Next steps would be to have
a smarter implementation of the compiler that would produce optimised code,
as well as to prove the compiler correctness and meta-properties of the Albert
language such as subject reduction. Longer term, we would like to implement a
certified decompiler from Michelson to Albert as well as a weakest-precondition
calculus to Albert in order to reason about Albert programs.

5.3 Related work

Despite the novelty of the field, many works regarding formal verification of
smart contracts have been published or announced. The K framework has been
used to formalise semantics of smart-contracts languages for Cardano5, Ethereum6

and Tezos7. Concordium has developed the ConCert certification framework [6],
implemented in Coq, that permits to reason on the lifetime of a contract. Scilla [22,23],
the smart-contract language of Zilliqa has been formalised in Coq as a shallow

4 Babylon is the codename of the second amendment to the economic protocol voted
by the Tezos community. It has been superseded by Carthage in March 2020.

5 https://github.com/kframework/plutus-core-semantics
6 https://github.com/kframework/evm-semantics
7 https://github.com/runtimeverification/michelson-semantics

https://github.com/kframework/plutus-core-semantics
https://github.com/kframework/evm-semantics
https://github.com/runtimeverification/michelson-semantics

12 B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, J. Tesson

embedding. Its formalisation supports inter-contract interaction and multiple
calls over the lifetime of the contract.

Several high-level languages for Tezos smart contracts are being developed [4,7,11,17].
Programs in the Archetype language[11] can contain security properties asser-
tions or specifications expressed in logic formulae that are translated to the
Why3 platform and then verified by automatic provers such as Alt-ergo, CVC
or Z3. Juvix [17] implements a variant of the quantitative type theory which
enables to track resources, similarly to Albert, as well as to specify and verify
smart contracts.

References

1. Michelson: the language of Smart Contracts in Tezos.
https://tezos.gitlab.io/whitedoc/michelson.html

2. Tezos code repository. https://gitlab.com/tezos/tezos

3. An introduction to the zen protocol. https://www.zenprotocol.com/files/zen_protocol_white_paper.pdf
(2017)

4. Alfour, G.: LIGO: a friendly smart-contract language for Tezos.
https://ligolang.org, accessed: 2020-05-12

5. Allombert, V., Bourgoin, M., Tesson, J.: Introduction to the tezos blockchain
(2019)

6. Annenkov, D., Nielsen, J.B., Spitters, B.: Concert: a smart contract cer-
tification framework in coq. In: Blanchette, J., Hritcu, C. (eds.) Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-
21, 2020. pp. 215–228. ACM (2020). https://doi.org/10.1145/3372885.3373829,
https://doi.org/10.1145/3372885.3373829

7. Arena, S.C.: SmartPy. https://smartpy.io, accessed: 2019-12-12

8. Bernardo, B., Cauderlier, R., Hu, Z., Pesin, B., Tesson, J.: Mi-Cho-Coq, a frame-
work for certifying Tezos Smart Contracts. In: Proceedings of the First Work-
shop on Formal Methods for Blockchains (to be published). FMBC 2019 (2019),
https://arxiv.org/abs/1909.08671

9. Bernardo, B., Cauderlier, R., Pesin, B., Tesson, J.: Albert, an intermediate smart-
contract language for the Tezos blockchain. In: Proceedings of the 4th Workshop
on Trusted Smart Contracts (to be published) (2020)

10. Claret, G.: Program in Coq. Theses, Université Paris Diderot - Paris 7 (Sep 2018),
https://hal.inria.fr/tel-01890983

11. Duhamel, G., Rognier, B., Sturb, P.Y., edukera: Archetype: a Tezos
smart contract development solution dedicated to contract quality insurance.
https://docs.archetype-lang.org, accessed: 2019-12-12

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries, Pearson Education (1994)

13. Glondu, S.: Extraction certifiée dans coq-en-coq. In: Schmitt, A. (ed.) JFLA 2009,
Vingtièmes Journées Francophones des Langages Applicatifs, Saint Quentin sur
Isère, France, January 31 - February 3, 2009. Proceedings. Studia Informatica
Universalis, vol. 7.2, pp. 383–410 (2009)

https://tezos.gitlab.io/whitedoc/michelson.html
https://gitlab.com/tezos/tezos
https://www.zenprotocol.com/files/zen_protocol_white_paper.pdf
https://ligolang.org
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://smartpy.io
https://arxiv.org/abs/1909.08671
https://hal.inria.fr/tel-01890983
https://docs.archetype-lang.org

Making Tezos smart contracts more reliable with Coq 13

14. Glondu, S.: Vers une certification de l’extraction de Coq. (Towards certification
of the extraction of Coq). Ph.D. thesis, Paris Diderot University, France (2012),
https://tel.archives-ouvertes.fr/tel-01798332

15. Goodman, L.M.: Tezos: A self-amending crypto-ledger. position paper.
https://tinyurl.com/tezospp (2014)

16. Goodman, L.M.: Tezos: A self-amending crypto-ledger. white paper.
https://tinyurl.com/tezoswp (2014)

17. Labs, C.: Juvix: a more elegant language for a more civilized age.
https://github.com/cryptiumlabs/juvix, accessed: 2020-05-31

18. Letouzey, P.: Programmation fonctionnelle certifiée – L’extraction de programmes
dans l’assistant Coq. Ph.D. thesis, Université Paris-Sud (Jul 2004)

19. Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) Types
for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en
Dal, The Netherlands, April 24-28, 2002. Lecture Notes in Computer Science,
vol. 2646. Springer-Verlag (2003)

20. Paulin-Mohring, C.: Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In: Sixteenth Annual ACM Symposium on Principles of Prog ramming
Languages. ACM, Austin (Jan 1989)

21. Paulin-Mohring, C.: Extraction de programmes dans le Cal-
cul des Constructions. Thèse d’université, Paris 7 (Jan 1989),
http://www.lri.fr/~paulin/PUBLIS/these.ps.gz

22. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-
guage. CoRR abs/1801.00687 (2018), http://arxiv.org/abs/1801.00687

23. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer
smart contract programming with scilla. PACMPL 3(OOPSLA), 185:1–185:30
(2019). https://doi.org/10.1145/3360611

24. Sewell, P., Nardelli, F.Z., Owens, S.: Ott. https://github.com/ott-lang/ott
25. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. SIG-

PLAN Not. 38(1), 224–235 (Jan 2003). https://doi.org/10.1145/640128.604150,
https://doi.org/10.1145/640128.604150

https://tel.archives-ouvertes.fr/tel-01798332
https://tinyurl.com/tezospp
https://tinyurl.com/tezoswp
https://github.com/cryptiumlabs/juvix
http://www.lri.fr/~paulin/PUBLIS/these.ps.gz
http://arxiv.org/abs/1801.00687
https://doi.org/10.1145/3360611
https://github.com/ott-lang/ott
https://doi.org/10.1145/640128.604150
https://doi.org/10.1145/640128.604150

	Making Tezos smart contracts more reliable with Coq

