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A case study of policy synthesis for swarm
robotics

Paul Piho1[0000−0002−4072−1000] and Jane Hillston1[0000−0003−4914−9255]

University of Edinburgh, Edinburgh, UK

Abstract. Continuous time Markov chain models, derived from process
algebraic descriptions of systems are a powerful method for studying the
dynamics of collective adaptive systems. Here, we study a formal mod-
elling framework, based on the CARMA process algebra, where infor-
mation about the possible control actions of individual components in
such systems can be incorporated in the process algebraic description.
The formal semantics for such specifications are defined to give rise to
continuous time Markov decision processes. Here we show how, together
with a given specification of desired collective behaviour, such models
can be readily treated as stochastic policy or control synthesis problems.
This is demonstrated through an example scenario from swarm robotics.

1 Introduction

Computational modelling and simulation approaches provide a useful set of tools
for studying complex dynamics of both man-made and natural collective systems.
Various formal modelling approaches have been proposed to simplify the creation
of such models. In particular stochastic process algebras with continuous time
Markov chain (CTMC) semantics [18, 3, 14], have provided a powerful high-level
framework for modelling collective systems, allowing compositional definitions
of complex models and formal semantics for automation of model creation.

Process algebra-based models have been used to study a variety of phenom-
ena in literature in order to better understand the processes involved or predict
the real life performance of the system. Stochastic process algebras with under-
lying CTMC-based semantics lend themselves well to numerical or statistical
analysis as well as various model-checking methods proposed over the years [15,
16]. In the context of man-made or engineered systems the interesting questions
often relate to policy or parameter synthesis problems. In particular, how the
components in such systems should be designed so that a system level objec-
tive is achieved. The link between high-level process algebraic models and the
related policy synthesis models is usually not made explicit. In this paper we
present a swarm robotics-inspired case study where this connection is made ex-
plicit by incorporating the information about control actions or possible choice
of parameters into the process algebraic description of the system.

We consider an existing stochastic process algebra Carma [18] which has pre-
viously successfully been applied to a range of application domains like pedes-
trian movement [12], urban transportation services [25], availability of cloud
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services [20] and ambulance deployment [11]. The language features a set of
communication primitives that, in conjunction with attribute-based filtering of
communication partners, are capable of capturing a versatile set of communica-
tion behaviours. The set of communication primitives in Carma correspond to
broadcast and unicast, making it particularly suitable for open collectives where
the participants of the communications cannot be known in advance.

The aim in this paper is to demonstrate through an example scenario from
swarm robotics [7, 19] that processes algebraic constructions in Carma lend
themselves well to stochastic policy or parameter synthesis problems. Swarm
robots provide rich modelling examples in the context of collective systems,
since the directly controllable behaviours and interactions are those of individual
robots but the design goals for the systems are phrased in terms of the aggregate
behaviour of the entire collective rather that of individual robots. To that end,
Carma can be equipped with continuous time Markov decision processes (CT-
MDPs) based semantics [22] providing a natural formalisation of policy synthesis
problems and bridging the gap between the formal high-level modelling and pol-
icy synthesis problems for collectives such as robot swarms. The contribution of
this paper is to illustrate these constructions with a case study and show how
ideas from formal modelling and policy synthesis come together in a framework
for stochastic control or parameter synthesis problems.

The paper is structured as follows. In Section 2, as background, we introduce
the notions of CTMDPs and population CTMDPs. In Section 3 we give a brief
overview of the Carma-based modelling framework for policy synthesis through
a simple example. In Section 4 we present the swarm robotics-inspired case study.
Finally we end the paper with related work and conclusions in Sections 5 and 6.

2 Background

The underlying mathematical model considered in this paper is a CTMDP. In
particular, we consider a high-level formal modelling framework where the con-
structed models can be related to a CTMDP. To start let us give the definition
of a CTMDP and introduce the related policy or parameter synthesis problems.

Definition 1. A continuous-time Markov decision process (CTMDP) is defined
by the tuple {S,A, q(i, j | a)} where S is the countable set of states, A set of
actions and q(i, j | a) gives the transition rates i → j given the control action
a ∈ A. We use A(i) to denote the set of feasible actions in state i.

The evolution of CTMDPs is described by the following: after the process
reaches some state and an action is chosen, the process performs a transition
to the next state depending only on the current state and the chosen action.
The time it takes for state transitions to happen is governed by an exponential
distribution with a rate given by the function q in Definition 1. The actions at
every such step are chosen according to some policy as defined below.

Definition 2. A policy is a measurable function ψ : R≥0×S×A → [0, 1] which
for every time t ∈ R≥0, state i ∈ S and action a ∈ A(i) assigns a probability
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ψ(t, i, a) that the action a is chosen in i at time t. In other words, policy ψ
defines a distribution over actions in any state of the CTMDP at time t. We
call a policy where, for every t ∈ R≥0 and i ∈ S, we have that ψ(t, i, a) ∈ {0, 1},
a deterministic policy. A policy ψ independent of t is a stationary policy.

Note that fixing a policy ψ resolves the non-determinism in the model and since
the times that state transitions take are exponentially distributed the result is
a continuous time Markov chain.

When we consider a system consisting of a large number of components with
identical behaviours it is often convenient to consider a special case of CTMDPs.

Definition 3. A population CTMDP (pCTMDP) is a tuple (X, T ,A, β) where:

– X = (X1, · · · , Xn) ∈ S = Zn≥0 where each Xi takes values in a finite domain
Di ⊂ Z≥0.

– β is a function such that β(a,X) returns a boolean value indicating whether
action a ∈ A is available from state X.

– T is a set of transitions of the form τ = (a,vτ , rτ (X)) such that β(a,X) = 1,
vτ is an update vector specifying that the state after execution of transition
τ is X + vτ and rτ (X) is a rate function.

In order to give semantics to the above definition of a population CTMDP we
associate it with the equivalent CTMDP in the following way:

– the state and action space of the corresponding CTMDP is the same as for
the population CTMDP.

– the set of feasible actions for state i ∈ S, denoted A(i), is defined by

A(i) = {a ∈ A | β(a, i) = 1}.

– the rate function q is defined as

q(i, j | a) =
∑

τ∈T ,τ=(a,vτ ,rτ (j)),i=j+vτ

rτ (i).

To form a policy synthesis problem for a given CTMDP we need a reward or a
cost function which maps a chosen policy to a real value. A common approach
for defining a reward function, for example, is as a function of the expected
behaviour of the resulting CTMC.

3 Carma-C for policy synthesis

Carma [18] is a stochastic process algebra for quantitative modelling of collective
adaptive systems. It supports the specification of complex stochastic behaviour,
based on continuous time Markov chains, in a compositional way. In particular,
each component in Carma consists of a process definition P and a local store
γ. Carma models then consist of a collective N , composed of individual com-
ponents or agents C, operating in an environment E . This structure of Carma
models is illustrated in Figure 1.
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Fig. 1: Illustration of the structure of Carma models.

The Function Labelled Transition Systems (FuTS) style operational seman-
tics [10] of Carma, as described in [18], give rise to a labelled transition sys-
tem which can be simulated directly or translated into a CTMC for numerical
analysis. The aim of this section is to introduce the extension Carma-C [22]
for specifying policy synthesis problems. The underlying CTMDP model allows
us to specify non-deterministic behaviour, corresponding to different possible
action choices, in a Carma-C model. The approach is to incorporate the non-
determinism into the store definitions. In Carma each attribute in store refers
to a single value that is used in the semantics, for example, to evaluate guards
or filter communication partners. Instead, in Carma-C we relax this construc-
tion and allow store attributes to refer to value domains which leads to non-
determinism over a range of possible behaviours. Note that a parametric CTMC
would be another reasonable choice for the underlying semantics that account
for non-determinism. The semantics of the languages would not change much
in that case as the construction of the parameter space of a CTMC from the
high-level model description is analogous to the construction of the action space.

In the following we describe Carma-C and as a running example present the
model for the case study in Section 4.1. This example model is outlined below.

Example 1. The model considers a simple robot swarm where an exploration
phase is modelled by a random walk on the graph structure in Figure 2. The
swarm attempts to discover and gather at the target location (x, y). This is mod-
elled by an exploration followed by an aggregation phase. The switch between
the two phases happens via broadcast communication. When any single robot
detects the target at (x, y) it broadcasts this knowledge to the rest of the swarm.

(0,0)

(0,1)

(1,0)

(1,1)

Fig. 2: Spatial structure for the example.

3.1 Local store

Let us start by considering the local stores of components. The local store is
used to hold the attributes of an individual component. For example, a location
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attribute of a component can be used to implement communication within a
given range. Carma and Carma-C differ in their treatment of the local store
— in Carma-C we use the store attributes to also specify the action space of
the underlying CTMDP. By associating each attribute in a store with a value
domain rather than a single value, we introduce the non-determinism required
to establish an action space. Here, the local store of each of the robots can be
defined to hold attributes for location, denoted loc, set of known target locations,
denoted target. The robustness parameter, succp, taking values in the interval
[0, 1], models how reliably the robots move when navigating towards a target.

γl = {loc 7→ {(0, 0)}, target 7→ {∅}, succp 7→ [0, 1]}

The location loc and target target are defined to have singleton value domains
consisting of pair (0, 0) and the empty set respectively. The robustness parameter
succp on the other hand takes values in the real interval [0, 1].

In the semantics of Carma-C the available control actions in the underlying
CTMDP are associated with the possible ways we can refine the defined store to
correspond to single values from the defined value domains. In particular, a con-
trol action f from a state of the Carma-C system resolves all non-determinism
in the descriptions. As an example, we can suppose that a given control action f
applied to γl gives the following: f(γl) = {loc 7→ (0, 0), target 7→ ∅, succp 7→ 0.7}.
This control action results in a local store of a component at location (0, 0) with
no known targets. The parameter succp, when a target is known, captures the
probability of the component successfully moving towards it.

3.2 Processes

Next let us consider the process definitions P . The processes are composed of
action primitives corresponding to input and output actions for broadcast and
unicast communication. Note that broadcast in Carma is non-blocking — the
output action is executed even if there is no component able to receive the
message. Unicast on the other hand is blocking. Unicast output is denoted by
α∗ [πs] 〈~e〉σ while unicast input is denoted by α [πs] 〈~e〉σ. Similarly broadcast out-
put is denoted by α∗ [πs] 〈~e〉σ while broadcast input is denoted by α∗ [πr] (~x)σ.

The following notation is used

– α is an action type which is used to distinguish between different actions.
– πs, πr, π denote boolean predicates that have to be satisfied before the action

can be executed. As mentioned previously, the communication in Carma and
Carma-C is attribute-based — guards are used to filter out communication
partners based on attributes such as location or communication range.

– e is an expression built using appropriate combinations of values, attributes
and variables. In the semantics, the expressions are evaluated over the send-
ing component’s local store and passed on to the receiving component.

– x is a variable which takes on the values that were communicated to the
receiving process by the sender.
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– σ is a function from Γ → Dist(Γ ) where Dist(Γ ) is the set of distributions
over the set of possible stores Γ . The function σ thus denotes a store update
and defines how the given store is changed as a result of an action.

The processes are composed via the standard constructs — action prefix (.),
choice (+), and parallel composition (‖). The behaviour of processes can be
further modified by setting guards on processes. As an example, we can consider
the following processes that we use to model the scenario in Example 1.

Explore
def
= [πr]random∗[◦]〈◦〉{loc 7→ R(loc)}.Explore

+ [πd]directed∗[◦]〈◦〉{loc 7→ D(loc)}.Explore

+ [πr]sense∗[◦]〈loc〉{target 7→ target ∪ {loc}}.Explore

Listen
def
= [πr]sense∗[◦]({(x, y)}){target 7→ target ∪ {(x, y)}}.Listen

Robot
def
= Explore ‖ Listen

Our example can then be modelled by the processes illustrated in Figure 3. The
broadcast actions random∗ and directed∗ describe a random walk and a directed
walk towards (x, y) respectively. Despite being defined as broadcast actions,
neither of these actions have any effect on the other robots in the collective
because the outgoing message is set to be empty. The guards πr and πd check
whether the target location is known or not and make sure only one of the
actions random∗ and directed∗ is enabled at a time. The guards are evaluated
conditionally on a chosen control action f in the following way.

πr =

{
true if f(γ)(target) = ∅.
false otherwise.

πd =

{
true if f(γ)(target) = {(x, y)}.
false otherwise.

The sense∗ action models the detection of the target location. In particular,
the broadcast output action models the robot detecting and sending the target
location to the rest of the swarm. The corresponding broadcast input action
models the robot’s ability to receive such a message.

The actions random∗ and directed∗ change the loc attribute of the robot
component according to functions R and D respectively. The (random) function
R corresponds to the next location being selected uniformly from the set of
available next locations defined by the graph structure in Figure 2. Similarly,
D corresponds to the next location taking the robot closer to the target with
some probability p, specified by the robustness attribute succp, and to one of

Explore | Listen

[πr]random∗[◦]〈◦〉
+ [πd]directed∗[◦]〈◦〉
+ [πs]sense∗[◦]((x, y))

[πs]sense∗[◦]〈loc〉

Fig. 3: Behaviour of individual Robot components.
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γ = {loc = {(x, y)}
target = {L}}

γ = {loc = {R(x, y)}
target = {L}}

γ = {loc = {(x, y)}
target = {L ∪ (x, y)}}

γ = {loc = {D((x, y), L)}
target = {L}}

γ = {loc = {(x, y)}
target = {L ∪ (x, y)}}

random∗〈◦〉

directed∗〈◦〉

sense∗〈(x, y)〉sense∗((x, y))

Fig. 4: Local component store changes induced by actions.

the other directly connected locations with probability 1 − p. This defines a
distribution over the possible unresolved local stores the components can evolve
to and models unreliable navigation. The sense∗ action updates the set of target
locations with the current location of the sending robot.

The functions R, D as well as the set operation ∪ are applied element-wise to
all elements in the relevant value domains as illustrated in Figure 4. For example,
consider the update loc 7→ R(loc). This means that the function R is applied to
every element in the value domain for loc. The store update for a given initial
store are illustrated in Figure 4.

3.3 Environment

Finally we are going to address the environment. An environment is defined by
a global store γg that models the overall state of the system and an evolution
rule ρ. The global store is defined similarly to the local store. To continue the
example, we define two global store variables — one corresponding to the rate
at which the actions random∗ and directed∗ happen, denoted mover. We specify
the value domain for this variable to be [0,∞). Similarly, we specify the value
domain for the store attribute senser, corresponding to the rate of the action
sense∗, to be [0,∞). Finally, we specify an attribute that keeps track of the
location of the target. In particular,

γg = {mover 7→ [0,∞), senser 7→ [0,∞), tloc 7→ {(1, 1)}}.

The evolution rule gives, depending on the current time, the global store and
the current state of the collective, and a control action f , a tuple of functions
ε = 〈µp, µw, µr, µu〉 called the evaluation context. The functions µp and µw de-
pend on the activity type α and the stores of the sender (γs) and receiver (γr)
and determine the probabilities for eligible receivers to receive a message corre-
sponding to an output action α. In the case of µp, the function gives a probability
of a broadcast message being received successfully. In contrast µw deals with the
unicast communication and returns a weight value. The probability of a given
receiver receiving the message is obtained by normalising the weight with respect
to the sum of weights of all possible receivers. The functions µr and µu depend
on the activity type and the sender store. The function µr determines the rate
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with which a given output action is performed and µu defines the updates on
the environment (global store and collective) induced by the action.

In our example, suppose f denotes the action chosen at time t and let γs and
γr denote the sender and receiver store respectively. Firstly, we define

µp(f(γs), f(γr), sense∗) = 1 for all stores γs and γr.

In particular, a broadcast message is received with probability 1 by all eligible
receivers. There are no unicast actions in this model so the definition of µw is
trivial. Supposing f(γg)(mover) = rm, f(γg)(senser) = rs we can say that the
rates of the actions are given as follows.

µr(f(γ), random∗) = µr(f(γ), directed∗) = rm for all local stores γ

µr(f(γ), sense∗) =

{
rs for all local stores γ such that f(γ)(loc) = f(γg)(tloc)

0 otherwise

Thus, the sense∗ action, in this case, is only possible from the location (1, 1).
The global store definitions and the composition of the collective do not change
so µu is again trivial. This completes the description of the Carma-C model.

3.4 System

As mentioned, a Carma-C system is composed of a collective of components
operating in an environment. For the running example we define the robot com-
ponents as a pair composed of process description and a store (Robot , γl). Finally
we consider a collective of N robots denoted (Robot , γl)[N ] in (γg, ρ).

Further details on the decision process semantics are omitted here due to
space constraints and can be found in [22]. We simply note that the state of the
pCTMDP corresponding to the described Carma-C model are represented by
one counting variable for each considered location. The set of feasible actions in
each state corresponds to the choices of the mover, senser and succp attribute
values from the sets [0,∞), [0,∞) and [0, 1] respectively. The value domains of
the remaining attributes are trivial to resolve being defined as singleton sets.

4 Case Study

4.1 Stationary target

In the previous section we gave the Carma-C model of the robot swarm example.
In this section we explore this model further. To start we describe the CTMDP
model that arises if appropriately chosen semantics are applied. As discussed in
Section 2 it is often useful to consider the population structure of the model.

The process state of the robots does not change throughout the evolution.
Thus, the only part of each component’s state that changes is the location at-
tribute. Let us denote the state space of the pCTMDP by the counting variables

X = (X01, X00, X10, X11, X
11
01 , X

11
00 , X

11
10 , X

11
11 )
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(0,0)

(0,1)

(1,0)

(1,1) B

1
2
ψ

(0,0)
1 (t,x) ψ

(0,1)
1 (t,x)

1
2
ψ

(0,0)
1 (t,x)

1
2
ψ

(1,0)
1 (t,x)

ψ
(1,1)
1 (t,x) 1

2
ψ

(1,0)
1 (t,x)

ψ2(t,x)

(a) Before broadcast – random walk

(0,0)

(0,1)

(1,0)

(1,1) B

ψ
(0,1)
1 (t,x)

ψ
(0,0)
1 (t,x)

ψ
(1,0)
1 (t,x)ψ

(0,0)
1 (t,x)

ψ
(1,0)
1 (t,x)

(b) After broadcast – directed walk

Fig. 5: Behaviour of individuals in the swarm model with 4 locations under some
deterministic policy ψ.

where Xij denotes the count of robots at location (i, j) that do not know the
target location while X11

ij denotes the count of robots at location (i, j) that know
that the target location is (1, 1).

The rates with which the actions are performed are linked to the global store
variables mover and senser that are only specified through their value domains.
This corresponds to the first part of the action space for the pCTMDP — at
each state of the model we need to specify the particular values to be used for
mover and senser. The second part of the action space corresponds to the local
succp attribute. For each location we have to specify the value of succp from the
interval [0, 1]. A policy, following the definition given in Section 2, is a function

ψ : R≥0 × Z8
≥0 × R2

≥0 × [0, 1]8 → [0, 1]

assigning a probability for each of the possible combinations of attributes mover,
senser and succp for each time t ∈ R≥0 and state x ∈ Z8

≥0. Remember, that the
choice of succp has to be made for each location giving rise to four copies of
[0, 1] in the signature of the function. The above corresponds to the non-trivial
parts of the policies ψ. To give a perfectly precise description according to the
semantics the policy would also have to assign values for each of the loc and target
attributes. However, as explained, the value domains for these remain singleton
sets throughout the evolutions and thus the choice of policy with respect to those
attributes is trivial. Denote the resulting space of probability distributions by
Π. In the following we are going to consider deterministic policies such that

ψ : R≥0 × Z8
≥0 × R2

≥0 × [0, 1]8 → {0, 1}.

Application of a policy ψ to the pCTMDP corresponding to the model gives
us behaviours of individual robots as given in Figure 5. We have denoted by

ψ
(i,j)
1 (t,x) the rate of robots moving out of location (i, j) at time t given the

population state x under the deterministic policy ψ. Similarly, ψ2(t,x) denotes
the rate of sensing and broadcasting the message about the target.

Policy synthesis In this section we are going to restrict the space of policies Ψ
to those that are stationary, or in other words, not dependent on time. However,



10 Paul Piho and Jane Hillston

instead of having policies that map each state of the population to the same
fixed value, we are going to model the situation where the movement rate of
the robots decreases as the density in a given location increases. Congestion
or interference is a common problem in swarm robotics that usually leads to
degraded performance [17, 21, 24]. This happens especially in the cases where
robots are moving towards a common target region and have to compete for
available space. For this example we are considering one possible way to capture
such effects on the swarm behaviour.

In order to model the congestion effects we are going to construct the policy
ψ so that some maximum movement rate rm, given by the global store attribute
mover, of robots is multiplied by the exponential e−a×

x
N where x denotes the

population density at the given location. In particular, the rate of movement

out of location (i, j) under policy ψ becomes ψ
(i,j)
1 (t,x) = rme

−a×
xij
N , where

xij is the population density at location (i, j). Such exponential degradation
of the performance of individual robots in a swarm was reported, for example,
in [17]. The constant a controls how fast the rate of movement decreases with
the increase in number of robots in a given location. The higher values of a
correspond to more severe effects of congestion. The meaning of this model
would be that if the entire swarm is in the same location the congestion has the
effect of approximately halving the rate of movement. 1

In the context of the running example we consider the synthesis of the succp
parameter. That is, how robust the behaviour of the robots should be for the
collective to satisfy its goal. We consider the following objective: with probability
greater than 0.9, 80% of the swarm reach the target location (1, 1) in the finite
time interval [0, 10]. We will refer to this as Obj 1.

4.2 Moving Target

In this section we are going to propose and study an extension to the model
considered in Section 4.1. In particular, there we assumed that the target location
remains the same throughout the evolution of the system. We extend the model
by considering a target whose location will change over time. To achieve that we
add an extra component, named Target to the system. Suppose the initial state
of its local store is γtarg = {loc 7→ {(1, 1)}}. For the movement we are going to
define the following process

Move
def
= [πmt]move∗[◦]〈◦〉{loc 7→ K(loc)}.Move

where K maps locations (1, 1) 7→ (1, 2). The guard πmt is defined to stop the
target after reaching location (1, 2). A simple way to model that after the target
has moved to a different location the robots have to look for it again is to
suppose that the robots also have a process that defines the broadcast input

1 Note that the above construction could equivalently be done directly in the definition
of the rates of random∗ and directed∗ actions.
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0 1 2 3 4 5
mover

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

p

0.0

0.2

0.4

0.6

0.8

1.0

(a) Stationary target with Obj 1.
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(b) Moving target with Obj 2.

Fig. 6: Probability of success with both mover and succp varying. Constant a
fixed to 0.7.

action corresponding to move∗.

ListenT
def
= move∗[◦](◦){target 7→ {∅}}.ListenT

Robot
def
= (Explore ‖ Listen ‖ ListenT , γ)

In particular, when the target location changes the robots immediately know that
their current set of target locations is no longer valid. To complete the extension
we need to define the rate at which the target moves and the probability with
which the broadcast resulting from move∗ is received. In our example we set the
rate of move∗ to 0.05 and assume that all robots will be aware of when the target
has left its current location. Finally, the global store update for action move∗

changes the value domain for the attribute tloc to correspond to the location
of the target component. This ensures that after the target moves the sense
actions will be available only from the new location of the target. The rest of
the model remains the same. The objective, denoted Obj 2, for the new scenario
is the following: with probability greater that 0.9, 80% of the swarm reach the
target locations while the target is there, in the finite time interval [0, 30].

4.3 Simulation results

In both of the described models we have left the exact values of succp and mover
unspecified. The third parameter in the model descriptions is the congestion
parameter a. This parameter would in general relate to the physical size of the
considered location, size of the robots and their collision avoidance behaviour.
For this simulation analysis we are going to simplify the situation by considering
a range of 21 equally spaced values in the interval [0.5, 0.9] and see how the
results to the policy synthesis problems change with these values. Similarly, for
each value of the congestion parameter we consider 10 classes of policies with
each keeping the movement rate attribute mover constant in the interval [0.0, 5.0].

For each class of policies where the constant a and rate attribute mover are
kept constant we are going to vary the values of succp. We treat the policy
synthesis problem as a logistic regression problem, aiming to separate the values
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(a) Satisfying Obj1 for the stationary tar-
get example.
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(b) Satisfying Obj2 for the moving target
example.

Fig. 7: Probability of success with fixed mover = 1.0 and varying succp. Blue
results correspond to congestion parameter set to 0.5 while red results correspond
to congestion parameter 0.9.
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(a) Stationary target with Obj 1.
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(b) Moving target with Obj 2.

Fig. 8: Changes in the decision boundary for logistic regression as mover changes.
Points indicate the mean over the tested values of congestion constant a with
error bars indicating the range of values acquired.

succp based on whether the objectives would be satisfied or not. This is done
by sampling values of succp and simulating the CTMC dynamics resulting from
fixing a policy of the constructed models. This is akin to works on parameter
synthesis which aim to find the regions of the parameter space where a given
specification is satisfied [6, 9, 5].

The approach for this is standard: consider a linear function y = w0 +w1p of
single explanatory variable (in this case value of succp, denoted p) and a logistic
function σ(r) = 1/(1 + e−w0−w1p) where σ(p) is interpreted as the probability
of success given succp value p. We are going to expect the goal to be satisfied
if σ(p) > 0.5. The weights for the regression model are going to be fitted based
on trajectories sampled using stochastic simulation for 200 random succp val-
ues. For each of the resulting 42000 parametrisations of the model we generated
5000 trajectories using Gillespie’s algorithm. Based on these trajectories we es-
timated the satisfaction probability for the defined objectives. Currently, the
tools for Carma do not support the non-deterministic specifications described
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here. In this paper the structure of the models as well as the policies are rela-
tively simple and for each choice of policy (or parametrisation) of the model we
can readily construct a chemical reaction network model that captures the be-
haviour of the Carma-C model. These models were constructed and simulated
with the DifferentialEquations.jl [23] package for the Julia programming language
which includes methods for specifying chemical reaction networks and imple-
ments stochastic simulation algorithms for simulating the underlying CTMC.

Figure 6 shows the empirical success probabilities for a fixed value of pa-
rameter a = 0.7. We can see that for the simpler model with stationary target
there is a quicker transition from not satisfying the objective to satisfying the
objective as either of the succp or mover parameters are increased. For the ex-
ample with the moving target this transition is more gradual. This observation
is confirmed by Figure 7 where both the constant a and the rate of movement
mover are kept constant while varying the attribute succp. In the case of the
moving target example we see that setting the movement rate of the robots to
1.0 means the defined objective will not be satisfied. In both cases varying the
parameter a within the rage [0.5, 0.9] does not have a large effect on whether the
objective can be satisfied. Finally, Figure 8 presents the results of the logistic
regression being performed on the simulation data. Unsurprisingly the effect of
varying the congestion constant gives a more pronounced effect on the decision
boundaries for the logistic regression. Similarly, the stationary target scenario is
more robust to unreliable navigation by the robots. The decision boundary for
the stationary target falls below 0.5 for faster robot components. This is due to
robots not moving out of the target’s location when the location is known.

Finally, we make a note about the computational difficulty of treating such
problems. Even for the relatively simple problems presented here, the computa-
tion time becomes large. The multi-threaded (16 threads) sampling of trajecto-
ries for the fixed policies took 5.9 hours in total for the stationary target example
while the moving target simulations took about 11.4 hours.

5 Related works

There exists a large body of work on CTMDPs both from the model checking and
optimisation perspectives. CTMDP models incorporate non-determinism in the
model description which is usually interpreted as possible control actions that
can be taken from a given state of the system. The model checking approaches
seek to verify whether or not a CTMDP satisfies the requirements for a given
class of policies. These commonly deal with time-bounded reachability [1, 8].
The optimisation perspective is to find a policy which maximises some utility or
minimises a cost function. In both cases the core issue is scalability; statistical or
simulation-based approaches offer a set of tools feasible for complex systems of
collective behaviour [4, 2]. An alternative interpretation would be to consider the
non-determinism as being uncertainty about parts of the system’s behaviour. In
the context of process algebras this idea has been considered in [13] to integrate
data and uncertainty into formal quantitative models in a meaningful way.
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6 Conclusion

In this paper we have presented a swarm robotics-inspired case study which
presents a framework fitting together ideas from formal modelling and policy
synthesis. In particular, we described a model expressed in the Carma-C lan-
guage equipped with CTMDP semantics and set up a simple policy synthesis
problem where parameters can be changed or controlled. The semantics of the
language presented does not discriminate against more complex cases like time-
dependent or probabilistic policies. With an appropriate choice of policy space
we could, for example, consider scenarios where the movement rate of the robots
further degrades with time. This makes the considered framework a powerful
modelling tool for stochastic control problems for collective systems. However,
as seen, the statistical and simulation based approaches considered here, while in
general more scalable than exact methods, are already becoming time-consuming
for relatively simple problems. For the examples in this paper we may be able to
decrease the number of evaluated policies for reasonable estimates but further
work on approximate methods on policy synthesis for the models is of interest
to reduce computational burden and allow dealing with complex policies.
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