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3 LTCI, Télécom Paris, Institut Polytechnique de Paris, France

albert.bifet@waikato.ac.nz

Abstract. Fairness-aware learning is increasingly important in socially-
sensitive applications for the sake of achieving optimal and non-
discriminative decision-making. Most of the proposed fairness-aware
learning algorithms process the data in offline settings and assume that
the data is generated by a single concept without drift. Unfortunately, in
many real-world applications, data is generated in a streaming fashion
and can only be scanned once. In addition, the underlying generation pro-
cess might also change over time. In this paper, we propose and illustrate
an efficient algorithm for mining fair decision trees from discriminatory
and continuously evolving data streams. This algorithm, called FEAT
(Fairness-Enhancing and concept-Adapting Tree), is based on using the
change detector to learn adaptively from non-stationary data streams,
that also accounts for fairness. We study FEAT’s properties and demon-
strate its utility through experiments on a set of discriminated and time-
changing data streams.

Keywords: AI ethics · online fairness · online classification.

1 Introduction

Artificial Intelligence (AI)-based decision making systems are routinely being
used in both online as well as offline settings to assist or even completely auto-
mate the decision-making. Yet, these automated data-driven tools may, even in
the absence of intent, lead to a loss of fairness and accountability in the employed
models. A plethora of such kind of AI-based discriminatory incidents have been
observed and reported [1, 2, 7, 12]. As a recent example, the AI algorithm behind
Amazon Prime has suggested signs of racial discrimination when deciding which
areas of a city are eligible for advanced services [13]. Areas densely populated by
black people are excluded from services and amenities even though race is blind
to the AI algorithm. Such incidents have sparked heated debate on the bias and
discrimination in AI decision systems, pulling in scholars from a diverse of areas
such as philosophy, law and public policy.

The growing concern over discriminative behavior of AI models has motivated
a number of approaches, ranging from defining discrimination to discrimination
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discovery and prevention for the development of AI tools that are discrimination-
conscious by-design. Up to now, more than twenty notions have been proposed
to measure the discriminative behavior of AI models [19]. One of the most widely
used measures is the statistical parity [19] which examines whether the proba-
bility of being assigned a positive target class, for example allocating healthcare
resources, is the same for both privileged and unprivileged groups. Formally put:

Discrimination(D) =
PP

PP + PN
− UP

UP + UN
(1)

where D is the labeled dataset, PP and PN refer to privileged community re-
ceiving positive and negative classification, respectively. So are UP and UN for
unprivileged community. Here, the attribute that distinguishes privileged groups
from unprivileged ones is referred as the sensitive attribute with the sensitive
value defining the unprivileged community. Take “race” as the sensitive at-
tribute for example, then the sensitive value is “black” and the positive class
value as allocating healthcare resources. The four communities PP, PN, UP and
UN therefore represents “non-black” being allocated healthcare resources, “non-
black” being denied healthcare resources, “black” receives healthcare resources
and “black” does not receive healthcare resources, respectively.

The aim of fairness-aware learning is then to train a decision model which pro-
vides accurate predictions, yet does not unduly bias against unprivileged groups.
That is to say, from statistical parity point of view, equally granting a benefit
to both privileged and unprivileged groups. While a large number of methods
have been proposed to achieve this goal, most of them tackle fairness as a static
problem. In many applications, however, data is generated sequentially and its
characteristics might also evolve over time. Therefore, fairness-aware learning
for such sort of applications should also be able to adapt to non-stationary dis-
tribution simultaneously.

Compared with the booming approaches in static settings, fairness-aware
learning in data stream is highly under-explored because of its significant chal-
lenges [23]. To address this issue, this paper introduces a fairness-enhancing
classifier that also equips with drift adaptation capability. The contribution of
this paper is three-fold:

• We define the problem of fairness-aware learning in non-stationary data dis-
tribution. Then, we propose FEAT, a discrimination-conscious learner with
add-on concept drift adaptation ability to handle discriminated and non-
stationary data streams.

• We introduce fair-enhancing information gain that also accounts for the local
discrimination to maximize the cumulative fairness, thus providing enhanced
fairness-awareness learning.

• The conducted experiments verify the capability of the proposed model in
online settings. To the best of our knowledge, this is the first work that jointly
addresses fairness and concept drift.
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The rest of the paper is organized as follows. Related studies are first reviewed
in Section 2. We describe the proposed FEAT in Section 3 and discuss the
experimental results in detail in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

The tremendous societal importance of AI fairness has arose growing con-
cern with ever increasing amount of discrimination-conscious models being pro-
posed [1, 2, 24]. These approaches typically can be categorized into three main
families: i) pre-processing approaches, ii) in-processing approaches and ii) post-
processing approaches, based on whether they mitigate bias at the data level,
the algorithm design or the output of model, respectively.

The first strategy, pre-processing solutions, consists of performing different
data level operations such as transformation and augmentation to neutralize or
eliminate the extent of inherited bias of the data. The rationale for such type of
approaches is that classifiers trained on the fairly represented data could make
fair predictions. These methods are model-agnostic and can be employed in con-
junction with any applicable classifier after the pre-processing step. Representa-
tive works include massaging [15] and reweighting [5]. The former directly swaps
the class labels of selected instances to change data distribution for the sake
of balanced representation. The swapped instances are selected using a ranker
based on the potential accuracy deterioration in order to minimize accuracy loss
while reducing discrimination. While the latter, instead of intrusively relabel-
ing the instances, assigns different weights to different communities to reduce
discrimination. Instances belonging to the protected group will receive higher
weighs comparing to instances from the unprotected group. In [14], these two
methods have also been extended for online classification. However, methods in
this category are typically not quite effective as standalone approaches unless
being used in conjunction with other methods with sophisticated design.

In contrast, the second category, in-processing approaches, consists of modi-
fying existing algorithms, usually integrating fairness as a part of the objective
function through constraints or regularization, to mitigate discrimination, and
is therefore algorithm-specific. [16] is one of the seminal in-processing works,
in which discrimination, reflected by the entropy w.r.t. sensitive attribute, is
incorporated into the splitting criterion for fair tree induction. In [20], the mea-
sure of “decision boundary fairness” is leveraged to penalize discrimination in
the formulation of a set of convex margin-based classifiers. More recently, [23]
improves the splitting strategy of [16] and operates their model in the online set-
ting. However, research efforts in this direction have still been limited. Our work
situates in this highly under-explored research direction to provide fair online
decision-making.

The last category, postprocessing techniques, consists of either adjusting the
decision boundary of a model or directly changing the prediction labels. [12]
processes with additional prediction thresholds to work against discrimination
while the decision boundary of AdaBoost is shifted w.r.t. fairness in [6]. The
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latter approaches pay attention to the outcome of a classifier. In [16], for exam-
ple, relabeling is performed on selected leaves of the decision tree to decrease
discrimination while minimizing the effect on predictive accuracy. We empha-
size that transferring such techniques to online settings is not straightforward
as the boundary/prediction could evolve themselves due to the non-stationary
distributions in online settings.

Fairness in data streams further requires the addressing of non-stationary dis-
tributions, known as concept drift [4, 10, 22, 25]. The learning algorithms there-
fore should be able to remain stable on previously learned and not outdated
concepts while adapting to such drifts. The adaptation is typically enabled by
learning incrementally from new instances [11, 17] and by forgetting outdated
information from the model [4, 18]. A significant amount of work has been done
with respect to this specific issue. However, the combined approach of address-
ing both fairness and concept drift has enjoyed relatively little research. Our
work situates in this research direction to enable fairness-aware learning in non-
stationary data streams.

3 FEAT: Fairness-Enhancing and concept-Adapting Tree

This section first outlines the vanilla Hoeffding Tree (HT), then the reformulated
fair information gain splitting criterion for fairness enhancement is introduced,
followed by the adaption of changes in the example-generating process. A number
of refinements and modifications that instantiate the fairness enhancement and
concept-adapting learning are specified thereafter.

3.1 The Hoeffding Tree (HT) Classifier

Our Fairness-Enhancing and concept-Adapting hoeffding Tree (FEAT) is built
on top of the Hoeffding Tree (HT) classifier [9]. To mine high-speed data stream,
HT induces a decision tree from the given stream incrementally, briefly scanning
each example in the stream only once and storing sufficient information in its
leaves in order to grow. The crux decisions needed during the induction of the
tree are when to split a node and with which example-discriminating test. To
this end, the authors employ the Hoeddding bound [9] to guarantee that the
tree learned probably converges to the conventional static tree built by a batch
learner, given enough examples. In HT, these two decisions are based on the
information gain, which is exclusively accuracy-oriented and does not consider
fairness. In addition, the construction of tree assumes the distribution generating
examples does not change over time.

In this work, to enable fairness-aware learning and concurrently adapt to
non-stationary data distributions, we extend the HT model in two ways: i) by
introducing an enhanced fair splitting criterion that enables the fairness-aware
learning (c.f., Section 3.2) and ii) by adding the ability to detect and adapt to
the evolution of underlying distribution (c.f., Section 3.3).
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3.2 The Fair-Enhancing Information Gain

The information gain (IG) [21] splitting criterion measures the uncertainty re-
duction due to a split during the tree construction. It is proposed purely from the
data encoding perspective without considering fairness of the tree construction.
To address the fairness-free issue of IG, previous studies reformulate the IG by
incorporating the discrimination gain into the splitting criterion of the decision
tree construction [16, 23]. Inspired by these ideas, we propose the fair-enhancing
information gain (FEIG) as follows,

FEIG(D,A) =

{
IG(D,A) , if FEG(D,A) = 0
IG(D,A)× FEG(D,A) , otherwise

(2)

where A is an attribute relative to the collection of instances D that stored in
sufficient statistics, Dv, v ∈ dom(A) are the partitions/subsets induced by A,
and FEG refers to fair-enhancing gain (FEG) that measures the difference in
discrimination due to the split and is formulated as:

FEG(D,A) = |Disc(D)| −
∑

v∈dom(A)

|Disc(Dv)| (3)

where each corresponding discrimination value Disc is gauged according to Equa-
tion (1).

In fair-enhancing gain, different from the previous proposed fair splitting
criteria [16, 23], the gain in fairness is directly gauged according to the dis-
crimination difference due to the split rather than entropy in regards to the
sensitive attribute. In addition, in fairness-aware learning, it is expected that
all groups being treated equally regardless of their population sizes. That is to
say, discrimination is discrimination regardless the number of population being
discriminated. To align with this idea, our splitting evaluation metric also cares
for local discrimination to maximize the cumulative fairness by assigning equal
weights to different discrimination representations. Specifically, each partition
induced by the attribute A contributes equally to the cumulative fairness of A
regardless the number and size of branches. In the general case, the higher re-
duction in discrimination the merrier, the fair-enhancing gain therefore would
like a larger merit to be assigned when evaluating the fairness suitability of a
candidate splitting attribute and ignores the number of its distinct values and
of each specific value.

The FEG is then tied with IG through multiplication as the FEIG. Multipli-
cation is favoured, when combining them as a conjunctive objective, over other
operations for example addition as the values of these two metrics could be in
different scales, and in order to promote fair splitting which results in a reduc-
tion in the discrimination after split, i.e., FEG is a positive value. In the end,
this conjunctive metric would be used as the alternative fair-enhancing split-
ting criterion during the construction of the tree to enable discrimination-aware
learning while maintaining predictive performance over the course of the stream.
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3.3 The FEAT Algorithm

HT learns incrementally from the high-speed data streams by incorporating the
incoming data in the stream into the model while simultaneously maintaining the
performance of the classifier on the previous information. The tree is adapted,
in practice grow, based on the newly available data in the stream and does not
forget the obsolete concept that not following the current example-generating
process. Therefore, HT assumes the distribution generating examples does not
change over time and cannot adapt to the evolving example-generating process.

To overcome this drawback, we further extend HT and propose FEAT which
maintains HT’s capabilities of processing high speed data stream and data-driven
encoding, also with enhanced fairness-aware learning by employing the previous
introduced fair-enhancing information gain as well as the ability of change de-
tection and concept forgetting.

To detect and react promptly to the evolution of the stream, FEAT keeps
its model consistent with the example-generating process of the current stream,
creates and replaces alternative decision subtrees when evolving data distribution
is detected at a node. FEAT extends HT which is incremental, so the tree is
adapted based on new instances. General speaking, the performance of such
model, under stationary distribution without drift, improves over the course of
the stream as it generalizes better after incorporating more examples into the
model. Therefore, performance deterioration is a good indicator of drift. FEAT
employs the sliding window size free ADWIN [3] to monitor the error rate of
the non-leaf node and declare when branch replacement is necessary. ADWIN
recomputes online whether two “large enough” subwindows of the most recent
data exhibit “distinct enough” averages, and the older portion of the data is
dropped when such distinction is detected. ADWIN therefore eases the burden of
selecting a fixed window size that the distribution likely remains to be stationary
within this window and adapts to the rate of change observed in the data itself.
The use of ADWIN and the sketch of FEAT is shown in Algorithm 1.

FEAT grows similarly to HT (line 1-2 and 6-16). The difference is that HT
depends on IG while FEAT employs FEIG to enable accuracy-oriented and
fairness-enhanced construction of the tree. What’s more, in order to keep the
model it is learning in sync with changes in the example-generating process,
FEAT continuously monitors the quality of old search decisions with respect to
the latest instances from the data stream (line 17). FEAT creates an alternative
subtree for each node that change in the underlying distribution is detected by
ADWIN (line 19). Under the condition that an alternative subtree already ex-
ists, FEAT checks whether the alternative branch performs better than the old
branch (line 21). The old branch will be replaced by the alternative one if so
(line 22), otherwise the alternative branch will be pruned (line 24). Compared
to HT, FEAT also maintains sufficient statistics of the nodes traversed in the
sort in order to update alternative branches (line 3-5). The learning process is
therefore fairness-enhancing and concept-adapting.
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Algorithm 1 The FEAT induction algorithm

Input: a discriminated data stream D,
confidence parameter δ,
tie breaking parameter τ .

FEAT(D, δ, τ)

1: Let FEAT be a tree with a single leaf (the root)
2: Init sufficient statistics at root
3: for each instance x in D do
4: FEATGrow(x, FEAT, δ, τ)
5: end for

FEATGrow(x, FEAT , δ, τ)

1: Sort example into leaf l using FEAT
2: Update sufficient statistics in l and nodes traversed in the sort
3: for traversed node that has an alternate tree Talt do
4: FEATGrow(x, Talt, δ, τ)
5: end for
6: if examples seen at l are not all of the same class then
7: Calculate FEIGl(Ai) for each attribute according to Equation (2)
8: Let Aa be the attribute with highest FEIGl

9: Let Ab be the attribute with second-highest FEIGl

10: Compute Hoeffding bound ε =

√
R2 ln(1/δ)

2nl

11: if Aa 6= A∅ and (FEIGl(Aa)− FEIGl(Ab) > ε or ε < τ) then
12: for each branch of the split do
13: Start a new leaf and initialize sufficient statistics
14: end for
15: end if
16: end if
17: for non-leaf node that its ADWIN detects change do
18: if Talt== null then
19: Create an alternative subtree Talt

20: else
21: if Talt is more accurate then
22: replace current node with its Talt

23: else
24: prune its Talt

25: end if
26: end if
27: end for
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3.4 The FEAT System

Our FEAT induction algorithm is built on top of the HT classifier. FEAT
therefore still holds HT’s theoretical guarantees and theorems can be proven
accordingly. Moreover, FEAT aims at enhancing fairness-aware learning while
optimizing predictive performance by alleviating the discrimination bias
towards the unprivileged group through the proposed fair splitting criterion,
the fair-enhancing information gain (Section 3.2), and by equipping itself
with the ability of change detection and concept forgetting (Section 3.3). The
modifications and refinements being included to Algorithm (1) to instantiate
the fairness-enhancing and concept-adapting learning over streams are discussed
hereafter.

Pre-pruning. HT detects the case of not splitting a node benefits more than
splitting by considering the merit of no split, represented by the null attribute
X∅ at each node to enable pre-pruning. A node is thus only allowed to split
when the candidate attribute is sufficiently better, according to the same
Hoeffding bound test that determines differences among other attributes,
than X∅. In the implementation of FEAT, the merit to be maximized is the
previous introduced FEIG. Thus, the FEIG of the best split found should be
sufficiently better than X∅’s. In terms of the FEIG of the null attribute, the
current level of class distribution and discrimination are used to represent IG
and FEG, respectively.

Sufficient statistics. HT briefly inspects each instance in the stream only
once and store sufficient information in the leaves to enable the calculation
of the splitting merit afforded by each possible split. In FEAT, the statistics
required for the calculation of FEIG should also be maintained. For the
discrete attributes, each node in the tree maintains a separate table per
attribute, containing the counts of the class labels that apply for each
attribute value for the calculation of IG, and the counts of unprivileged
group and privileged group as well as receiving positive classification in
unprivileged group and privileged group that apply for each attribute value
for the calculation of FEG. The learning process updates appropriate entries
based on the attribute value, sensitive attribute value and class of the
examples over the stream accordingly. As for the numeric attribute, FEAT
maintains a separate Gaussian distribution per class label that apply for
each attribute. So are the four previous mentioned FEG calculation related
statistics. The appropriate distribution statistics is updated according to
the sensitive attribute value and class of the examples over the stream. The
most appropriate binary split point for each distribution is evaluated based
on the allowing test and the merit of each allowed threshold candidate is
also calculated according to the proposed FEIG. With the selected split
points, the weight of values to their either side are approximated for each
class and four FEG calculation related statistics, and the FEIG merit of each
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numeric attribute candidate is thus computed from these weights.

Memory management. Efficient storage of the sufficient statistics is crucial
in stream environment. In case of the non-leaf node, FEAT prunes the
alternative branch if its performance is inferior to the old one. FEAT also
reduces the size of the sufficient statistics in each leaf by removing poor
attributes when their FEIG is less than the current best attribute by more
than the Hoeffding bound. The rationale is that, according to the bound,
such attributes are unlikely to be selected in that leaf. In addition, assuming
there are d attributes with a maximum number of v values per attribute and
c possible classes in total, the required memory of FEAT is O((d + 2)vc)
compared to the O(dvc) of HT. FEAT therefore incurs negligible extra costs
especially when d� 2.

4 Experimental Evaluation

In this section, we conduct experiments to evaluate the accountability and fair-
ness of the proposed discrimination-aware data stream learner. To this end, we
first investigate the enhanced discrimination reduction capability of the proposed
fair splitting criterion. We also show a comprehensive quantitative evaluation to
verify the concept adaptation capability of our approach.

4.1 Dataset

Contrary to a growing body of discrimination-conscious approaches motivated
by the increasing attentive AI fairness, related datasets and benchmarks are still
in a shortage [1]. With respect to the highly under-explored online fairness, this
challenge is further magnified by the drift and the demanding requirement of
the number of instances contained therein. We evaluate our approach on the
datasets used in the recent work of this research direction [23], the Adult and
the Census datasets [8] both targeting on identical learning task of determining
whether a person earns more than 50K dollars per annum.

There are 48,843 instances in the Adult dataset and each instance is described
by 14 employment and demographic attributes (attribute “fnlwg” is removed as
suggested). We follow the same options in [23] by setting “gender” as the sensitive
attribute with sensitive value equals to “female” being the protected group. The
positive class is people making an annual income of more than 50K dollars.
The Census dataset is significantly bigger in size including 299,285 instances
and 41 attributes. It has an identical prediction task as the Adult dataset. So
are the setting of sensitive attribute, sensitive value and positive classification.
The intrinsic discrimination levels, according to Equation (1), of the these two
datasets are 19.45% and 7.63%, respectively.

Existing works mostly address these two datasets from the static learning
perspective [19, 24, 27]. In our experiments we randomize the order of the in-
stances then process them in sequence to simulate discriminated data streams,
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following [23]. The prequential evaluation [10] is employed in which each in-
coming instance is first being predicted upon arrival then is available for model
training.

4.2 Justification of FEIG

The proposed FEIG is designed to enhance the learning idea of all groups being
treated equally regardless of their population sizes for fair-enhancing learning.
To validate this enhanced fairness-aware learning, we incorporate FEIG into
the model proposed in [23] denoted as FAHT+ and FEAT- representing FEAT
driven by the splitting criterion proposed in [23] and compare them respectively.
We further incorporates the discrimination-aware splitting criterion of [16] into
our model in replacing of FEIG, referred as Kamiran’s. We do not incorporate
FEIG into their model as it is designed for offline setting. Our motivation for
using the identical classifiers is that, since our main interest at this stage is to
compare the fair-enhancing learning of FEIG with other discrimination-aware
splitting criteria, we would like to minimize the influences on the results from
the bias of classifiers due to their versatile difference. The obtained results are
shown in Table 1.

Table 1. Accuracy-vs-discrimination between FEIG and other discrimination-aware
splitting criteria. Percentage in parenthesis is the relative difference over the perfor-
mance of its corresponding comparing method.

Methods
Metric Adult dataset Census dataset

Discrimination Accuracy Discrimination Accuracy

FAHT 16.29% 81.83% 3.20% 94.28%

FAHT+
15.62% 81.01% 2.61% 92.82%

(-4.11%) (-1.0%) (-18.44%) (-1.55%)

FEAT- 19.14% 83.76% 2.20% 94.14%

FEAT
15.26% 84.01% 1.25% 95.03%

(-20.27%) (+0.3%) (-43.18%) (+0.95%)

Kamiran’s 22.61% 83.92% 6.59% 94.82%

FEAT
15.26% 84.01% 1.25% 95.03%

(-32.51%) (+0.11%) (-81.03%) (+0.22%)

As shown in Table 1, it is clear that FEIG consistently enhances the fairness-
aware learning by diminishing the discrimination to a lower level while main-
taining a high prediction capability. The best discrimination reduction obtained
by FEIG is 81.03% on Census dataset comparing with the discrimination-aware
splitting criterion proposed by Kamiran et al [16]. FEIG’s learning idea of all
groups being treated equally therefore indeed pushes the discrimination to a
lower level, which is consistent with its theoretical design. This enhanced anti-
discrimination ability is also statistically verified, comparing to the more effective
fair splitting criterion among the baseline criteria, as shown in Table 2.
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Table 2. The McNemar’s test on the datasets for two different splitting criteria: FEIG
and FAHT, testing whether FEIG worked to enhance the positive classification of the
unprivileged group.

FAHT
FAHT+ Adult dataset1 Census dataset2

Granted Rejected Granted Rejected

Granted 716 110 1,120 263

Rejected 173 15,193 468 153,924
1 Chi-squared = 13.583, df = 1, p-value = 0.0002282
2 Chi-squared = 56.93, df = 1, p-value 4.516e-14

FEAT-
FEAT Adult dataset3 Census dataset4

Granted Rejected Granted Rejected

Granted 1,127 80 1,331 359

Rejected 153 14,832 658 153,427
3 Chi-squared = 22.249, df = 1, p-value = 2.395e-06
4 Chi-squared = 87.32, df = 1, p-value < 2.2e-16

With respect to the attributes being selected for the construction of trees,
both FAHT+ and FEAT select “marital status” as their root on Adult dataset,
while FAHT and FEAT- are rooted on “age”. Neither of these two attributes is
discrimination-inclined compared to the root attribute “capital gain” of Kami-
ran’s, which encodes the intrinsic discrimination bias of the historic data as
members from the unprivileged group, i.e., the sensitive value is female, are
less like to receive higher capital-gain than the privileged group’s. On the other
hand, age, generally speaking, is positively correlated with income per annum
and holds that regardless of the sensitive attribute value. However, it is also pos-
sible that age could have local discrimination. That is to say, within a small age
range, male could more likely to have a higher income than female as they tend
to mature at different ages therefore differ in career age which could reflect in-
come. FEIG’s learning idea of all groups being treated equally regardless of their
population sizes aims to detect and reflect such type of discrimination encoding.
Such fair-enhancing attribute selection can also be concluded from the Pearson
correlation coefficients between sensitive attribute and decision boundaries as
shown in Table 3. As one can see, FEIG based models’ predicted boundaries
are less correlated with the sensitive attribute than FAHT’s due to its fairness-
enhancing ability. In addition, different from the tree induction in static setting,
the selected attributes are still splitting candidates for the succeeding splitting
selection, such fairness-enhancing decisions therefore have impacts on follow-
ing decisions as well (feedback loops) and could further enhance fairness-aware
learning.

4.3 Drift Adaptation Capability

FEAT is designed for enhanced fairness-aware learning with add-on concept
drift adaptation ability to handle non-stationary discriminated data streams.
For comparison, we implemented two recently proposed fairness-aware online
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Table 3. Pearson analysis on sensitive attribute, predicted decision boundary and
actual decision boundary. Comparison values within each cell are formatted by (FAHT:
FAHT+‖ FEAT-: FEAT) with results on Adult and Census dataset in the above and
below table, respectively.

Entity Sensitive attribute Predicted boundary Actual boundary
Sensitive attribute 1:1 ‖ 1:1 -0.16:-0.14 ‖ -0.19:-0.14 -0.21:-0.21 ‖ -0.21:-0.21

Predicted boundary -0.16:-0.14 ‖ -0.19:-0.14 1:1 ‖ 1:1 0.44:0.41 ‖ 0.49:0.50
Actual boundary -0.21:-0.21 ‖ -0.21:-0.21 0.44:0.41 ‖ 0.49:0.50 1:1 ‖ 1:1

Entity Sensitive attribute Predicted boundary Actual boundary
Sensitive attribute 1:1 ‖ 1:1 -0.09:-0.07 ‖ -0.07:-0.05 -0.16:-0.16 ‖ -0.16:-0.16

Predicted boundary -0.09:-0.07 ‖ -0.07:-0.05 1:1 ‖ 1:1 0.56:0.53 ‖ 0.57:0.57
Actual boundary -0.16:-0.16 ‖ -0.16:-0.16 0.56:0.53 ‖ 0.57:0.57 1:1 ‖ 1:1

learners FAHT [23] and FEI [14]. In addition, we compared against two baselines,
the Hoeffding Tree (HT) and Kamiran’s which incorporates the discrimination-
aware splitting criterion of [16] into FEAT in replacing of FEIG. We also trained
a concept-adapting learner, denoted HAT [4], as a baseline. All methods are
trained in the same way for all datasets and the results are summarized in
Table 4.

Table 4. Accuracy-vs-discrimination between FEAT and baseline models. The best
performance of the compared baselines is marked in boldface. Percentage in parenthesis
is the relative difference over the performance of the best baseline method.

Methods
Metric Adult dataset Census dataset

Discrimination Accuracy Discrimination Accuracy

HT 22.59% 83.91% 6.84% 95.06%

Kamiran’s 22.61% 83.92% 6.59% 94.82%

FAHT 16.29% 81.83% 3.20% 94.28%

FEI 22.16% 75.51% 6.34% 81.26%

HAT 22.3% 84.7% 6.54% 95.64%

FEAT
15.26% 84.01% 1.25% 95.03%

(-6.32%) (-0.7%) (-60.94%) (-0.64%)

As one can see, FEAT consistently pushes the discrimination to lower val-
ues while maintaining fairly comparable predictive performance in all datasets.
Compared with the best accuracy results, FEAT has a small drop of 0.7% and
0.64% on Adult and Census dataset, respectively. This is expected as HAT is
exclusively accuracy-driven while FEAT optimizes for data encoding as well as
enhanced discrimination reduction. In comparison with the most fair baselines,
FEAT achieves 6.32% and 60.94% discrimination reduction on Adult and Census
dataset, respectively. We also observe that FEI performances poorly although it
is proposed for online setting. This verifies that online fairness cannot be triv-
ially solved by a simple combination of existing techniques from corresponding
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communities. We further posit that such theoretical design is fundamental to
progress in fairness in evolving data streams and not ad hoc.

5 Conclusions

This paper focuses on the highly under-explored discrimination-conscious learn-
ing in evolving data streams. To address this challenge, we propose FEAT with
embedded fair-enhancing splitting criterion and further equip it with the ability
of change detection and concept forgetting to handle discriminated and non-
stationary data streams. The positive results of conducted experiments show
the versatility of FEAT in online settings. One immediate future direction is
to have an ensemble as random forests based on FEAT. A different avenue is
to extend these results in conjunction with our previous work [26] to situations
where the class label is not available for fair clustering. Here there are multiple
unique challenges including appropriately defining and assessing fairness in the
unsupervised scenarios.
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