
Nets versus trees for feature ranking and gene
network inference

Nicolas Vecoven, Jean-Michel Begon, Vân Anh Huynh-Thu, Pierre Geurts ∗

Institut Montefiore, University of Liège, Belgium

Abstract. We propose to tackle the challenging problem of gene regula-
tory network inference, using variable importance measures derived from
artificial neural networks (ANN). When combined with a L1-regularized
selection layer, these measures allow ANN to be competitive with state of
the art techniques for this problem based on random forests.

1 Introduction

In many supervised learning applications in bioinformatics, one is more inter-
ested by the interpretability of the trained model than by its actual predictive
performance. One way to gain such interpretability is through the application
of feature selection (or ranking) techniques, which aim at identifying the most
relevant features for predicting a given output. In bioinformatics, as well as
in other domains, Random Forests (RF) is one of the most popular methods
for feature selection/ranking, as there are several very effective ways to derive
variable importance scores from a forest [1]. On the other hand, despite their
often excellent predictive performance, artificial neural networks (ANN) are often
considered black-box models, which makes them less popular in bioinformatics
than they are for example in computer vision. Recently however, motivated by
the advent of deep learning, there has been a resurgence of interest towards (old
and new) techniques to derive variable importance scores from ANN (see [2, 3] for
reviews). Despite their genericity, these methods have been mostly evaluated on
image classification tasks, where they highlight image regions that are responsible
for the prediction associated to a given test image, on a per sample basis.

In this paper, we propose and evaluate several approaches to derive global
variable importance scores from ANN from a feature selection perspective and
compare them to variable importance scores derived from RF. We carry out
experiments both on benchmark feature selection tasks and on a challenging
bioinformatics task, namely gene regulatory network inference, where RF have
been shown to perform very well.

2 Variable importances from neural networks

The methods described here compute, for each feature xi, with i ∈ {1, . . . , p}, an
importance score Imp(xi) that assesses its relevance for predicting the output.
The first two methods work for any pre-trained network with an arbitrary feed-
forward structure, while the third method requires to train a specific structure.

∗Vân Anh Huynh-Thu is a postdoctoral researcher at the FNRS, Belgium.

We assume here for simplification that all hidden neurons use ReLU activations
and we expose each method in a (multi-output) regression setting. In the case
of classification, a softmax layer is added and variable importances are derived
considering the inputs of the softmax layer as multiple regression outputs.

Gradients (GRAD). A standard variable importance measure for ANN averages
over a set of N examples (e.g., the training set) the absolute (or squared) value
of the derivative of the ANN output according to the input to score [2]:

Imp(xi) =

N∑
n=1

∣∣∣∣∂f(xn)

∂xi

∣∣∣∣ , (1)

where f denotes the ANN output and xn ∈ IRp denotes the nth training example.
When there are multiple outputs, the importance score can be summed over the
different outputs. These scores can be efficiently computed using backpropagation.

Layer-wise relevance propagation (LRP). Although commonly used, the gradient
method has the drawback that it does not explain the output of the network
but instead how the output varies when the input is changed [3]. Clearly, an
input could be relevant even if (1) is zero at a given point. Several alternative
importance measures have been proposed to circumvent this limitation. As
a representative of these methods, we use below a particular instance of the
generic LRP method proposed in [4]. Given a test example x, this method
associates an importance score Imp(ni,x) to each neuron ni computed through a
back-propagation scheme. Let us denote by O(ni,x) the output of the activation
function of ni at x (in the case ni is an input neuron, O(ni,x) is the value of
input i for x). Assuming there are l output neurons, Imp(n,x) for a neuron n

of the last hidden layer is initialized as Imp(n,x) =
∑l

k=1 |O(n,x)wk|, where
wk is the weight of the connection between n and the kth output. Let us then
denote by {n1, . . . , nm} and {n′1, . . . , n′

n} the neurons of two successive hidden
layers and by wij the weight of the connection between ni and n′j . Then, the
importance of a neuron ni (i ∈ {1, . . . ,m}) is computed by:

Imp(ni,x) =

n∑
k=1

ReLU(O(ni,x)wik)Imp(n′k)∑m
j=1ReLU(O(nj ,x)wjk)

. (2)

This propagation rule corresponds to the LRP rule with α = 1 and β = 0 [4].
The importance of an input xi is eventually computed as the sum of Imp(ni,x)
over all training examples, with ni the neuron corresponding to input xi.

Selection layer (SL). The last method is inspired by sparse linear regression.
A one-to-one connected layer with linear activations, called selection layer, is
introduced between the inputs and the first hidden layer of the network. The
network is then trained, starting from unit weights in the selection layer, to
minimize the regular cost function (cross-entropy or least-square) plus a L1

penalty term on the weights of the selection layer. A new hyper-parameter α ≥ 0
is introduced that balances the L1 penalty term in the cost function, with α = 0
meaning no penalty. Let us denote by wsl

i the weight of input xi in the selection
layer, Imp(xi) is simply set to

∣∣wsl
i

∣∣ after training. A similar idea with however
a more complex regularization scheme has been proposed in [5]. Below, we also
experiment with hybrid strategies, called GRAD+SL and LRP+SL, that train
the network using the selection layer but then use variable importance as derived
with the two previous techniques. This amounts to multiplying the SL weights
with the importances computed on the network without the selection layer.

3 Experiments on benchmark problems

Datasets. To gain some insights about these methods, we first carry out experi-
ments on four different artificial problems:

LR a linear regression problem generated using the make regression function
in scikit-learn [6]. Output y is computed as

∑25
i=1 wixi, where weights wi

are randomly selected in [0, 100] and inputs xi are N(0, 1) distributed.

LC a linear classification problem generated by thresholding the LR problem
output so that the two classes are perfectly balanced.

NLR A non-linear regression problem generated using the make friedman1 func-
tion in scikit-learn, which generates the following problem:
y = 10 ∗ sin(pi ∗ x0 ∗ x1) + 20 ∗ (x2 − 0.5)2 + 10 ∗ x3 + 5 ∗ x4 + 0.1 ∗ ε,
where ε is a N(0, 1) noise and the xi’s are uniformly distributed in [0, 1].

NLC a non-linear classification problem generated using the make classification
function of scikit-learn with 25 relevant features. Briefly, a class among
two is associated randomly to each vertex of a hypercube of dimension
25 and training examples of the corresponding class are generated in the
neighboorhood of each vertex by using a normal distribution centered on
the vertex (with Σ = I).

For each dataset, we add a varying number of irrelevant features (generated
following a N(0, 1) distribution).

Protocol. Five ANN-based importance scores are analyzed (GRAD, LRP, SL,
SL+GRAD, SL+LRP). They are compared with RF mean decrease impurity
(MDI) scores, using Gini entropy in classification and variance in regression [1].
Since the relevant features are known, the variable rankings are assessed using
the area under the precision-recall curve (AUPR). The AUPR will be equal to 1
iff the ranking is perfect (i.e., all relevant variables receive a higher importance
than the irrelevant ones), while the AUPR will be close to the proportion of
relevant variables if the ranking is close to random. We also report the predictive
performance of each model, ie., the error rate in classification and the mean
squared error (MSE) in regression.

Table 1: AUPR and Error rate (ER)/MSE for the four datasets, with 5000
variables in total in each dataset.

GRAD+SL LRP+SL SL GRAD LRP RF

LC
ER 0.027±0.005 0.369±0.006 0.227±0.007

AUPR 0.927±0.039 0.926±0.040 0.925±0.041 0.752±0.030 0.711±0.038 0.744±0.041

NLC
ER 0.143±0.034 0.387±0.031 0.188±0.019

AUPR 0.747±0.070 0.810±0.063 0.810±0.064 0.597±0.089 0.595±0.079 0.994±0.011

LR
MSE 0.037±0.005 0.900±0.006 0.597±0.022
AUPR 0.984±0.019 0.969±0.011 0.962±0.010 0.870±0.033 0.821±0.067 0.827±0.056

NLR
MSE 0.197±0.044 0.733±0.003 0.215±0.006
AUPR 0.842±0.079 0.852±0.076 0.850±0.077 0.802±0.001 0.918±0.079 1.000±0.000

In all experiments, unless otherwise stated, each ANN is composed of 4
hidden layers of 500 ReLU [7] neurons each and is trained for 60000 steps on
batches of size 50 using dropout and AdamOptimiser. RF models are composed
of 1000 unpruned trees. For each dataset we use 2000 training samples and 8000
test samples. All inputs are centered and rescaled according to their standard
deviation prior to training. The parameter α of SL, as well as the parameter K of
RF (i.e., the number of randomly chosen variables at each tree node) are tuned by
cross-validation1, using error rate and MSE as a proxy for AUPR (since the latter
can not be computed when relevant variables are unknown). All experiments are
repeated five times (with newly generated data) and the means and standard
deviations over these five runs are provided for each metric.

Results and discussion. Table 1 reports ER/MSE and AUPR for all methods
on the four datasets with 4975 irrelevant variables for LC, LR, and NLC and
995 for NLR, and Table 2 shows the impact of the number of irrelevant variables
on the NLC problem. Clearly, adding a selection layer is crucial to obtain
good performance, especially when the number of irrelevant variables is large.
Without this layer, ANN are worse than RF along both criteria. With SL, ANN
outperform RF in terms of ER/MSE. They also clearly outperform RF in terms
of AUPR on the linear problems (LC and LR), but RF are better at highlighting
the relevant variables on the non-linear problems, despite less good predictive
performance. Among the three SL methods, GRAD+SL seems to be inferior
(resp. superior) on the non-linear (resp. linear) problems, while LRP+SL and
SL are undistinguishable. Figure 1 shows the impact of the number of hidden
layers for the NLR problem (left) and the impact of α for the NLC problem
(right). Tuning the number of layers and α seems to be necessary to obtain
good performance. ER/MSE seem to be good proxies for AUPR, although their
optima do not perfectly coincide.

4 Application to gene network inference

An open problem in computational biology is the reconstruction of gene regulatory
networks (GRNs) from gene expression data. A GRN aims at explaining the joint

1Values of α are optimized in {0, 10, 60, 100, 500}, while values of K are optimized in
{√p, log(p), p/3, p/2, p} with p the number of inputs.

Table 2: Results of the different methods on the non-linear classification problem
with increasing number of irrelevant features (from 25 to 7475).

feat. GRAD+SL LRP+SL SL GRAD LRP RF

50
ER 0.033 ± 0.004 0.039 ± 0.003 0.106 ± 0.006

AUPR 1.000 ± 0.001 1.000 ± 0.000 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

2500
ER 0.078 ± 0.018 0.324 ± 0.020 0.160 ± 0.013

AUPR 0.873 ± 0.059 0.906 ± 0.039 0.901 ± 0.044 0.636 ± 0.118 0.628 ± 0.126 0.999 ± 0.001

5000
ER 0.143 ± 0.034 0.387 ± 0.031 0.188 ± 0.019

AUPR 0.747 ± 0.070 0.810 ± 0.063 0.810 ± 0.064 0.597 ± 0.089 0.595 ± 0.079 0.994 ± 0.011

7500
ER 0.159 ± 0.018 0.408 ± 0.018 0.211 ± 0.006

AUPR 0.738 ± 0.053 0.784 ± 0.059 0.784 ± 0.061 0.579 ± 0.088 0.571 ± 0.084 0.996 ± 0.005

0 1 2 3 4 5 6 7
Number of hidden layers

0.0

0.1

0.2

0.3

0.4

0.5

GRAD + SL (1-AUPR)
LRP + SL (1-AUPR)
SL (1-AUPR)
MSE with SL

0 25 50 75 100 125 150 175 200
Alpha

0.1

0.2

0.3

0.4

0.5

0.6 GRAD + SL (1-AUPR)
LRP + SL (1-AUPR)
SL (1-AUPR)
Missclassification rate with SL

Fig. 1: Impact of the number of hidden layers (500 neurons each) for NLR with
995 irrelevant variables (left) and α for NLC with 4975 irrelevant variables (right).

variability in the expression levels of a group of genes, through a directed graph
where an edge eij going from gene gi to gene gj indicates that gi regulates the
expression of gj . Often, one aims at reconstructing a weighted network, where
each putative edge is associated with a confidence weight. One approach to
the reconstruction of weighted GRNs consists in solving one regression problem
for each gene gj in turn, with the expression of gj as output variable and the
expressions of the other genes as input variables. The variable importance score of
gene gi in the model predicting the expression of gj is then used as weight for the
edge eij . Using this framework, the RF are currently one of the state-of-the-art
approaches for GRN inference [8].

We used our ANN-based variable importance scores to reconstruct the five
networks of the DREAM4 multifactorial challenge [9]. Each network is composed
of 100 genes, for which the expressions in 100 samples are available. In each case,
we selected the ANN architecture and the parameter α in SL that optimize the
accuracy computed using cross-validation2. Table 3 shows the AUPR obtained
with ANN and RF. We again observe that the addition of SL improves the per-
formances, without however a clear winner among SL, GRAD+SL and LRP+SL.
Although the ANN approaches do not outperform the state-of-the-art RF, they
nevertheless yield very good performances with respect to the latter.

2The number of hidden layers was optimized in {2,3}, the number of neurons per layer was
optimized in {50,150} and the value of α was optimized in {5,60,300,800,1500}.

Table 3: AUPR for the five DREAM4 networks

GRAD+SL LRP+SL SL GRAD LRP RF

Net 1 0.148 0.143 0.126 0.118 0.100 0.155
Net 2 0.109 0.101 0.121 0.085 0.095 0.153
Net 3 0.178 0.193 0.191 0.146 0.166 0.225
Net 4 0.184 0.172 0.192 0.144 0.149 0.208
Net 5 0.187 0.180 0.166 0.133 0.143 0.199

5 Conclusion

We evaluated several feature ranking techniques based on ANN and compared
them on several problems with RF, chosen as a state of the art reference. ANN
have clearly the upper hand over RF in linear settings and they are also able
to withstand themselves in non linear settings, although slightly inferior to RF.
The introduction of a L1-regularized selection layer turns out to be crucial both
for feature selection and predictive performance when the number of irrelevant
features is large. The different scores are very similar, although the gradient seems
to lag behind in non-linear settings. Results on GRN inference are promising
and could probably be improved further, as future work, with more extensive
parameter tuning. Future works will also include experiments on larger real GRN
applications (where computing times will be an important issue), the inclusion of
other importance scores and regularizations, as well as a better characterization
of the different importance scores.

References

[1] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances in
forests of randomized trees. In Advances in Neural Information Processing Systems 26,
pages 431–439. 2013.

[2] P. Leray and P. Gallinari. Feature selection with neural networks. Behaviormetrika,
26(1):145–166, 1999.

[3] G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and understanding
deep neural networks. Digital Signal Processing, 73(Supplement C):1 – 15, 2018.

[4] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS
one, 10(7):e0130140, 2015.

[5] Y. Li, C.-Y. Chen, and W. W. Wasserman. Deep feature selection: Theory and application
to identify enhancers and promoters. RECOMB2015, pages 205–217, 2015.

[6] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[7] V. Nair and G.E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814, 2010.

[8] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring regulatory networks
from expression data using tree-based methods. PLoS ONE, 5(9):e12776, 2010.

[9] D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating realistic in silico
gene networks for performance assessment of reverse engineering methods. Journal of
Computational Biology, 16(2):229–239, 2009.

