Skip to main content

Balancing Between Scalability and Accuracy in Time-Series Classification for Stream and Batch Settings

  • Conference paper
  • First Online:
Book cover Discovery Science (DS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12323))

Included in the following conference series:

Abstract

As big data sources providing time series increase, and data is provided in increased velocity and volume, we need to efficiently recognize data provided, classifying it according to their type, origin etc. This is a first important step in doing analytics on data provided from disparate data sources, such as archival sources, multiple sensors, or social media feeds. Time series classification is the task labeling time series using a set of predefined labels.

In this paper we present the K-BOSS-VS algorithm for time series classification. The proposed algorithm is based on state-of-the-art symbolic time series classification algorithms, and aims to achieve high accuracy, balancing with computational efficiency. K-BOSS-VS exploits K representatives of each time series class to classify new series. This provides opportunities for representing intra-class differences, thus increasing the classification accuracy, while incurring a small performance overhead compared to methods using one class representative. Additionally, K-BOSS-VS offers a solution for classifying time-series in batch and streaming settings, due to the opportunities for increasing computational efficiency and the low memory requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/UniSurreyIoT/KAT/raw/master/logic/data.csv.

  2. 2.

    http://db.csail.mit.edu/labdata/labdata.html.

References

  1. Armbrust, M., et al.: Structured streaming: a declarative API for real-time applications in apache spark. In: Proceedings of the 2018 International Conference on Management of Data, pp. 601–613 (2018)

    Google Scholar 

  2. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394. ACM (2015)

    Google Scholar 

  3. Baldán, F.J., Benítez, J.M.: Distributed fastshapelet transform: a big data time series classification algorithm. Inf. Sci. 496, 451–463 (2019)

    Article  Google Scholar 

  4. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  5. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 135–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_15

    Chapter  Google Scholar 

  6. Cano, A., Krawczyk, B.: Kappa updated ensemble for drifting data stream mining. Mach. Learn. 109(1), 175–218 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time series classification. arXiv preprint arXiv:1603.06995 (2016)

  8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  9. Engle, C., et al.: Shark: fast data analysis using coarse-grained distributed memory. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 689–692. ACM (2012)

    Google Scholar 

  10. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Transfer learning for time series classification. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1367–1376. IEEE (2018)

    Google Scholar 

  11. Ganz, F., Barnaghi, P., Carrez, F.: Automated semantic knowledge acquisition from sensor data. IEEE Syst. J. 10(3), 1214–1225 (2014)

    Article  Google Scholar 

  12. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn., 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8

  13. Hüsken, M., Stagge, P.: Recurrent neural networks for time series classification. Neurocomputing 50, 223–235 (2003)

    Article  Google Scholar 

  14. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access 6, 1662–1669 (2018)

    Article  Google Scholar 

  15. Kasetty, S., Stafford, C., Walker, G.P., Wang, X., Keogh, E.: Real-time classification of streaming sensor data. In: 2008 20th IEEE International Conference on Tools with Artificial Intelligence, vol. 1, pp. 149–156. IEEE (2008)

    Google Scholar 

  16. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous trend-based classification of streaming time series. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 294–308. Springer, Heidelberg (2005). https://doi.org/10.1007/11547686_22

    Chapter  Google Scholar 

  17. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications Co., New York (2015)

    Google Scholar 

  18. Meng, X., et al.: MLlib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)

    Article  MathSciNet  Google Scholar 

  20. Schäfer, P.: Scalable time series classification. Data Min. Knowl. Disc. 30(5), 1273–1298 (2015). https://doi.org/10.1007/s10618-015-0441-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Schäfer, P., Högqvist, M.: SFA: a symbolic Fourier approximation and index for similarity search in high dimensional datasets. In: Proceedings of the 15th International Conference on Extending Database Technology, pp. 516–527. ACM (2012)

    Google Scholar 

  22. Schäfer, P., Leser, U.: Fast and accurate time series classification with weasel. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 637–646. ACM (2017)

    Google Scholar 

  23. Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using SAX and vector space model. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1175–1180. IEEE (2013)

    Google Scholar 

  24. Smirnov, D., Nguifo, E.M.: Time series classification with recurrent neural networks

    Google Scholar 

  25. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE (2017)

    Google Scholar 

  26. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed graph system on spark. In: First International Workshop on Graph Data Management Experiences and Systems, p. 2. ACM (2013)

    Google Scholar 

  27. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, p. 2. USENIX Association (2012)

    Google Scholar 

  28. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant streaming computation at scale. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 423–438. ACM (2013)

    Google Scholar 

  29. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the University of Piraeus Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Glenis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glenis, A., Vouros, G.A. (2020). Balancing Between Scalability and Accuracy in Time-Series Classification for Stream and Batch Settings. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61527-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61526-0

  • Online ISBN: 978-3-030-61527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics