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Abstract. Classifier chains is a key technique in multi-label classifica-
tion, since it allows to consider label dependencies effectively. However,
the classifiers are aligned according to a static order of the labels. In the
concept of dynamic classifier chains (DCC) the label ordering is chosen
for each prediction dynamically depending on the respective instance at
hand. We combine this concept with the boosting of extreme gradient
boosted trees (XGBoost), an effective and scalable state-of-the-art tech-
nique, and incorporate DCC in a fast multi-label extension of XGBoost
which we make publicly available. As only positive labels have to be
predicted and these are usually only few, the training costs can be fur-
ther substantially reduced. Moreover, as experiments on eleven datasets
show, the length of the chain allows for a more control over the usage of
previous predictions and hence over the measure one want to optimize.

Keywords: multi-label classification · classifier chains · gradient boosted
trees

1 Introduction

Classical supervised learning tasks deal with the problem to assign a single class
label to an instance. Multi-label classification (MLC) is an extension of these
problems where each instance can be associated with multiple labels from a
given label space [17]. A straight-forward solution, referred to as binary rel-
evance decomposition (BR), learns a separate classification model for each of
the target labels. However, it neglects possible interactions between the labels.
Classifier chains (CC) similarly learn one model per label, but these take the
predictions of the previous models along a predetermined sequence of the labels
into account [12]. It was shown formally that CC is able to capture local as
well as global dependencies and that these are crucial if the goal is to predict
the correct label combinations, rather than each label for itself [2]. However, in
practice the success of applying CC highly depends on the order of the labels
along the chain. Finding a good sequence is a non-trivial task. First, the number
of possible sequences to consider grows exponentially with the number of labels.
Second, even though a sequence might exist which is optimal w.r.t. some global
dependencies in the data, local dependencies make it necessary to consider dif-
ferent chains for different instances. For instance, in a driving scene scenario it
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is arguable easier to detect first a car and then infer its headlights during the
day, whereas it is easier to first detect the lights and from that deduce the car
during the night. Roughly speaking, each instance has its own sequence of best
inferring its true labels.

Dynamic chain approaches address the problem of finding a good sequence
for a particular instance. For instance, Kulessa and Loza Menćıa [5] propose
to build an ensemble of random decision trees (RDT) with special label tests
at the inner nodes. The approach predicts at each iteration the label for which
the RDT is most certain and re-uses that information in subsequent iterations.
Despite the appealing simplicity due to the flexibility of RDT, it comes at the
expense of predictive performance since RDT are not trained in order to optimize
a particular measure.

The Extreme Gradient Boosted Trees (XGBoost) approach [1], instead, is
a highly optimized and efficient tree induction method which has been very
successful recently in international competitions. Similarly to CC and dynamic
chain approaches, XGBoost refines its predictions in subsequent iterations by
using boosting. This served as inspiration to the proposed approach XDCC,1

which integrates Dynamic Classifier Chains into the extreme boosting structure
of gradient boosted trees. XDCC’s optimization goal in each boosting round is
to predict only a single label for which it is the most certain. This label can
be different for each training instance and depends on the given data, label
dependencies and previous predictions for the instance at hand. The information
about the predicted labels is carried over to subsequent rounds.

A key advantage of the proposed approach is the reduced run time in com-
parison to classifier chains. This is due to the fact that though the total number
of labels can be quite high in MLC, the number of actually relevant labels for
each instance is relatively low, usually below 10. Hence, only few rounds are
potentially enough if only the positive labels are predicted, whereas CC-based
approaches have to still make predictions for each of the existing labels.

2 Preliminaries

This section provides a short overview of the notations used in this work. Ad-
ditionally an insight to XGBoosts basic functionality, i.e. to the tree boosting
and classification process as well as the way it can deal with multiple targets, is
given.

2.1 Multilabel classification

Multilabel classification (MLC) is the task of predicting for a finite set of N
unique class labels ∗ = {λ1, . . . , λN} whether they are relevant/positive, i.e.,
yj = 1 if λj is relevant, or yj = 0 if λj is irrelevant/negative, for a given
instance. The training set consists of training examples xi ∈ X and associated

1 Publicly available at https://github.com/keelm/XDCC

https://github.com/keelm/XDCC
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label sets yi ∈ Y = {0, 1}N , 1 ≤ i ≤ M , which can be represented as matrices
X = (xik) ∈ AM×K and Y = (yij) ∈ {0, 1}M×N , where features xij can be
represented as continuous, categorical or binary values. An MLC classifier h :
X → Y is trained on the training set in order to learn the mapping between
input features and output label vector. The prediction of h for a test example
x is a binary vector ŷ = h(x). An extensive overview over MLC is provided by
Tsoumakas and Katakis [17].

The simplest solution to MLC is to learn a binary classifier hj for each of the
labels λj using the corresponding column in Y as target signal. The approach is
referred to as binary relevance decomposition (BR) and disregards dependencies
between the labels. For instance, BR might predict contradicting label combina-
tions (for a specific dataset) since the labels are predicted independently from
each other.

2.2 (Dynamic) Classifier Chains

The approach of classifier chains [12] overcomes the disadvantages of BR as it
neither assumes full label independence nor full dependence. As in BR, a set of N
binary classifiers is trained, but in order to being able to consider dependencies,
the classifiers are connected in a chain according to the Bayesian chain rule and
pass their predictions along a chain. Each classifier then takes the predictions of
all previous ones as additional features and builds a new model.

More specifically each hj is trained on the augmented training data X×Y•,1×
. . .× Y•,j−1 to predict the j-th column Y•,j of Y based on previous predictions
ŷ1, . . . , ŷj−1 as follows

ŷj = hj(x, ŷ1, . . . , ŷj−1) (1)

with ŷ1 = h1(x) and assuming for convenience an ascending order on the labels.
As further research revealed, CCs are able to capture global dependencies as

well as dependencies appearing only locally in the instance space [2]. However,
the ability of the CC approach to capture dependencies is determined by the
chosen ordering of the labels. A common approach is to set the order of the
labels randomly. Early experimental results already revealed that the ordering
has an obvious effect on the predictive performance [12, 15]. A solution is to use
ensembles of CCs with different orderings [12, 6], but creating and maintaining
an ensemble of CCs is not always feasible [4] and comes with further issues
on combining the predictions. An alternative way to handle the label ordering
problem is to determine a good chain sequence in advance. For this purpose
methods such as genetic algorithms [4], Bayesian networks [16] or double Monte
Carlo optimization technique [11] have been used.

Apart from the computational disadvantages of exploring different label se-
quences, which often leads to just choosing a random ordering in practice, an-
other issue is the underlying assumption that there is one unique, globally op-
timal ordering which fits equally to all instances. Instead, dynamic approaches
choose the label ordering depending on the test instance at hand. For instance,
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Silva et al. [15] determine the classification order on the fly by looking at the
nearest neighbors of the test instance and using the label ordering which works
well on the neighbors. However, the approach is computationally expensive since
new CC models have to be build during prediction. Nam et al. [10] use recur-
rent neural networks to predict the positive labels as a sequence. Nam et al. [9]
further use reinforcement learning to determine a different, best fitting sequence
over the positive labels of each training instance. Predicting only the positive
labels has the advantage of considerably lower computational costs during pre-
diction, since the number of relevant labels is usually low in comparison to the
total number of available labels. The advantage comes at the expense of ignor-
ing dependencies to negative labels. Predicting the absence of a label is often
much easier than finding positive ones and the knowledge about the absence of
a label might be very useful to predict a positive label. Despite the induction
of the positive labels does not depend on the number of labels, the approaches
of Nam et al. [10, 9] can still be computationally very demanding due to the
complex neural architectures needed, especially regarding the usage of reinforce-
ment learning which actually has again to explore many possible label sequences
during training.

Kulessa and Loza Menćıa [5] propose to integrate dynamic classifier chains
in random decision trees (RDT) [19]. In contrast to the common induction of
decision trees or to random forests, RDTs are constructed completely at random
without following any predictive quality criterion. Kulessa and Loza Menćıa [5]
place tests on the labels at the inner nodes, which they can turn on and off
without altering the original target of the RDT since it is only specified during
prediction by the way of combing the statistics in the leaves. Hence, it is possible
to simulate any binary base classifier of a CC in any possible chain sequence. In
an iterative process, the same RDTs is queried subsequently to determine the
next most certain (positive or negative) label. In the respective next iteration
the predicted label is added to the input features like in CC and the respective
label tests are turned on.

The results of the experimental evaluation of DCC-RDT show that the dy-
namic classification achieves a major improvement over static label orderings.
However, the lack of any optimization may lead to an insuperable gap to state-
of-the-art methods. In fact, the results also show that RDT are inherently not
suitable for sparse data like text.

2.3 Extreme Gradient Boosted Trees

Extreme Gradient Boosted Trees (XGBoost) [1] is a versatile implementation
of gradient boosted trees. One of the reasons for its success is the very good
scalability due to the specific usage of advanced techniques for dealing with
large scale data. XGBoost was originally designed for dealing with regression
problems, but different objectives can be defined by correspondingly adapting
the objective function and the interpretation of the numeric estimates. Each
model consists of a predefined number of decision trees. These trees are built
using gradient boosting, i.e., the model is step-wise adding trees which further



Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains 5

minimize the training loss. They are constructed recursively, starting at the root
node, by adding feature tests on the inner nodes. At each inner node, all possible
feature tests are evaluated according to the gain obtained by applying the split
on the data. The test candidate returning the highest gain score is then taken
and both children are further split up until the maximum depth is reached or the
gains stay below a certain threshold. A prediction can be calculated by passing
an instance through all trees and summing up their respective leaf scores.

Boosted Optimization We refer to [1] for a more detailed description of XGBoost.
An XGBoost model consists of a sequence of T decision trees f1, . . . , fT . Each
tree returns a numeric estimate fc(x) for a given instance x. Predictions are
generated by passing an instance through all trees and summing up their leaf
scores. The model is trained in an additive manner and each boosting round
adds a new tree that improves the model most. For the t-th tree the loss to
minimize becomes

L(t) =

M∑
i=1

l
(
yi, (ŷ

(t−1)
i + ft(xi))

)
+Ω(ft) (2)

where l(y, ŷ) is the loss function for each individual prediction, ŷ
(t−1)
i =

∑t−1
k=1 fk(xi)

the prediction of the tree ensemble so far and Ω is an additional term to regu-
larize the tree. Combined with a convex differential loss function the objective
can be simplified by taking the second-order approximation which gives us the
final objective to optimize:

obj(t) =

T∑
v=1

[Gvwv +
1

2
(Hv + ε)w2

v] + γT with Gv =
∑
i∈Iv

gi, Hv =
∑
i∈Iv

hi

(3)

Iv = {i|q(xi) = v} is the set of indices for all data points in leaf v. Gv defines
the sum of the gradients for all instances Iv in leaf v, Hv the corresponding sum
of the Hessians and wv the vector of leaf scores. With the optimal weights w∗v
for leaf v the objective becomes

obj∗ = −1

2

T∑
v=1

G2
v

Hv + ε
+ γT with w∗v = − Gv

Hv + ε
(4)

These weights finally lead to the gain function used to evaluate different splits.
The indices L and R for G and H refer to the proposed right and left child
candidates:

Lsplit =
1

2

[
G2
L

HL + ε
+

G2
R

HR + ε
− (GL +GR)2

HL +HR + ε

]
− γ (5)

There are only few special adaptations of the gradient boosting approach to
MLC in the literature and they mainly deal with computational costs. Both [14]
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and [20] propose to exploit the sparse label structure which they try to transfer
to the gradient and Hessian matrix by using L0 regularization. These approaches
are limited to decomposable evaluation measures, which roughly speaking means
that, opposed to the classifier chains approaches, they are tailored towards pre-
dicting the labels separately rather than jointly. Moreover, different technical
improvements regarding parallelization and approximate split finding are pro-
posed which could also be applied to the proposed technique in the following.

3 Learning a Dynamic Chain of Boosted Tree Classifiers

Instead of learning a static CC that predicts labels in a predefined rigid order, we
introduce a dynamic classifier chain (DCC) where each chain-classifier predicts
only a single label which is not predetermined and can be different for each
sample. To prevent learning bad label dependencies, the base-classifiers are built
to maximize the probability of only a single label. On the one hand this allows
to exploit more complex label dependencies, and on the other side to massively
reduce the length of the chain, while still being able to predict all labels. Given
a dataset with 100 labels and a cardinality of five, a DCC of length five has
the ability to predict all labels, whereas a CC would have to train 100 models.
Because of XGBoosts highly optimized boosting-tree architecture, we decided to
use it as base-classifiers in our chain. Therefore we have to modify it and make
it capable of building multilabel-trees which can deal with an arbitrary number
of labels.

3.1 Multi-label XGBoost

Since XGBoost only supports binary classification with its trees in the original
implementation, the underlying tree structure had to be adapted in order to
support multi-label targets.

The first modification is to calculate leaf weights and gradients over all class
labels instead of only a single one. More specifically, Gj,v =

∑
i∈Iv gj,i and

Hj,v =
∑
i∈Iv hj,i extend to the labels 1 ≤ j ≤ N . In consequence, the objective

(4) and gain functions (5) have to be adapted to consider gradient and hessian
values from all classes. A common approach in multi-variate regression and multi-
target classification is to compute the average loss of the model over all targets

[18]. Adapted to our XGBoost trees, this corresponds to the sum of
G2

j

Hj+ε
over

all labels (cf. Table 1). We refer to it as the sumGain split method. We use
cross entropy as our loss, as it has demonstrated to be appropriate practically
and also theoretically for binary and especially multi-label classification tasks
[8, 2]. Hence, the loss is computed as (shown here only for a single label)

l(y, ŷ′) = −y log(ŷ′) + (1− y) log(1− ŷ′) (6)

In order to get ŷ′ as a probability between zero and one, a sigmoid transforma-
tions has to be applied to the summed up raw leaf predictions ŷ =

∑T
t=1 ft(x),
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Fig. 1: Dynamic Chain: training pipeline (blue arrows) & prediction pipeline (red
arrows).

returned from all boosting trees, where ŷ′ = sigmoid(ŷ) = 1
1+e−ŷ . This is also

beneficial for calculating g and h, since the gradients of the loss function simply
become

g = ŷ − y and h = ŷ · (1− ŷ) (7)

One might not expect a very different predictions from the combined formu-
lation than from minimizing the loss for each label separately by separate models
(as by BR). However, as Waegeman et al. [18] note fitting one model to optimize
the average label loss has a regularization effect that stabilizes the predictions,
especially for infrequent labels. In addition, only one model has to be inferred
in comparison to N which has a major implication on the computational costs.
This is especially an advantage in the case of a large number of labels and our
proposed dynamic approach can directly benefit from it.

3.2 Extreme Dynamic Classifier Chains

After introducing the ML-XGBoost models, which can deal with multiple labels,
the next step is to modify the tree construction to align it with our goal of
predicting a single label per instance.

Table 1 shows the proposed split functions and an example for each one to
demonstrate the gain calculations. We assume to have a single instance with
four different target labels y and their corresponding predictions ŷ. g and h are
calculated according to Eq. (7) and we get G = (−0.2,−0.8, 0.9, 0.1). We have
focused on different characteristics for each function. The max versions focus on
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Table 1: Proposed split gain calculations with a simplified example calculation
for the predicted scores ŷ = (0.8, 0.2, 0.9, 0.1) of the previous trees and given
true labels y = (1, 1, 0, 0). For convenience, we assume Hj + ε = 1.

Gain Formula Example Gain Formula Ex.

sumGain

N∑
j=1

(
G2

j

Hj + ε

)
0.22 + 0.82 + 0.92 + 0.12 maxGain max

16l6N

(
G2

j

Hj + ε

)
0.92

sumWeight

N∑
l=1

(
−Gj

Hj + ε

)
0.2 + 0.8− 0.9− 0.1 maxWeight max

16l6N

(
−Gj

Hj + ε

)
0.8

sumAbsG

N∑
l=1

(∣∣∣∣ −Gj

Hj + ε

∣∣∣∣) 0.2 + 0.8 + 0.9 + 0.1 maxAbsG max
16l6N

(∣∣∣∣ −Gj

Hj + ε

∣∣∣∣) 0.9

optimizing a tree for predicting only a single label, whereas sum functions aim
for finding a harmonic split that generates predictions with high probabilities
over all labels. The weight variants focus on directly optimizing the tree outputs
and hence prefer positive labels, while the gain splits stay close to XGBoosts
original gain calculation and try to optimize positive and negative labels to the
same extend. Hereinafter we give a more detailed description and motivation
for each gain function:

Maximum default gain over all labels XDCC predicts labels one by one.
It hence does not need to find a split which increases the expected loss over
all labels (such as sumGain), but only one. Hence, maxGain is tailored to
find the label with maximal gain, which corresponds to the label for which
the previous trees produced the largest error. In the example in Table 1,
this corresponds to λ3 for which a change of 0.92 w.r.t. cross entropy was
computed if the prediction is changed to the correct one.

Sum and maximum gradients over all labels In contrast to maxGain, sum-
Grad aims at good predictions for positive labels only and hence corre-
sponds to the idea of predicting the positive labels first. Positive labels obtain
positive scores, whereas negative labels obtain negative scores. The variant
maxGrad chooses the positive label for which the greatest improvement is
possible and only goes for the best performing negative label if there are no
true positive labels in the instance set. In the example, λ2 is chosen since the
improvement is greater than for λ1, and definitely greater as for the negative
labels.

Sum and maximum absolute gradients over all labels In contrast to sum-
Gain and maxGain, the measures sumGrad and maxGrad not only favour
positive labels but also take the gradients linearly instead of quadratically
into account. This might, for instance, reduce the sensitivity to outliers.
Hence, we also include two variants sumAbsG and maxAbsG which en-
courage to predict the labels where the model would improve the most, re-
gardless whether it is positive and negative, but which similarly to sumGrad
and avgGrad use a linear scale on the gradients.



Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains 9

Even though DCC’s original design is to predict a single positive label per round,
good overall predictions might be required from the beginning for instance in the
case of shorter chains. Therefore, we use the split-method as an additional hy-
perparameter to choose it individually for different XDCC variants and datasets.

Training Process A schematic view for training the dynamic chain with a
length of two is shown in Figure 1 following the blue lines. In a first preprocessing
step, the training datasets have to be adapted. For each label λj a new label-
feature p0j , initialized as unknown (?), is added to the original features resulting

in the augmented space x,p ∈ X × [0, 1]N . While proceeding through the chain,
these ”?” values are replaced with predicted label probabilities out of ŷr =∑T
t=1 f

r
t ((x,pr−1)) in round r. . As soon as these feature columns begin to be

filled with values, following classifiers may detect dependencies and base their
predictions on them. Each round r, for 1 ≤ r ≤ N , starts with training a
new ML-XGBoost model by passing the train set combined with the additional
label-features pr−1 and the target label matrix y to it. Afterwards, the model
is used to generate predictions ŷr on the same data used to train it, shown in
the predictions tables. In the last step these predictions are then propagated to
the next chain-classifier, by replacing the corresponding label features with the
predicted probabilities pr. Three different cases can occur during this process:

– At least one label, that was not propagated previously, has a probability
≥ 0.5: The label with the highest probability is propagated.

– All labels, that were not propagated previously, have probabilities < 0.5:
The label with the lowest probability is propagated.

– Otherwise, no additional label is propagated.

They can be formalized where pri,j denotes the added label feature and pri,j the
corresponding predictions for label λj of an instance xi in training round r.

pri,j =


ŷri,j if pr−1i,j =? and maxm ŷ

r
i,m ≥ 0.5 and ŷri,j = maxm ŷ

r
i,m

ŷri,j if pr−1i,j =? and maxm ŷ
r
i,m < 0.5 and ŷri,j = minm ŷ

r
i,m

pr−1i,j otherwise

(8)

In all cases where labels are propagated, later classifiers are not allowed to change
these labels from positive to negative or the other way around, based on the
assumption that later classifiers tend to have a higher error rate, since their
decisions are based on previous predictions [13].

Prediction Process The prediction process is similar to the training process.
Instead of training a model in each step, we reuse the models from the training
phase to generate predictions on the test set. After all predictions are propagated,
the propagated labels are mapped to label predictions, where probabilites pi,j <
0.5 or equal to ? are interpreted as negative labels and probabilities pi,j ≥ 0.5
as positive labels. The process is depicted in Figure 1 following the red lines.
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3.3 Refinements to the chain

In this section we shortly describe two problems we faced during development
of the DCC approach and propose methods to tackle them.

Separate and Conquer Consecutive models in the chain tend to select the
same splits and therefore predict the same labels, especially ones which are easy
to learn, i.e. if they clone existing features. We solve this problem by introducing
an approach similar to separate-and-conquer from rule learning [3]. The separat-
ing step turns all gradient and hessian values of previous predicted labels for an
instance to zero. Thereby they are no longer considered during split score cal-
culation in the conquering step and other splits become more likely since scores
for already used splits are lower.

Cumulated Predictions A second observation was that final predictions, after
traversing the chain, contain too little positive labels. Analyzing the chain models
showed that especially early models predict multiple positive labels, but are
only allowed to propagate the one with the highest probability. Therefore we
introduce cumulated predictions to preserve these otherwise forgotten positive
predictions. The idea is to save all predictions of each chain classifier and merge
them afterwards with the chain predictions of the unmodified DCC using the
following heuristic. The final cumulated prediction ci,j for label λj and instance
xi is computed as

ci,j =

{
pNi,j if pNi,j 6= ?

max(ŷ1i,j , ..., ŷ
N
i,j) otherwise

(9)

4 Experiments

The experiments were evaluated for the following models, where BR, CC and
RDT serve as baselines:

– BR: Binary Relevance with default XGBoost models for binary-classification.

– CC: Classifier Chains with a random order and default XGBoost as base-
models.

– RDT-DCC: Dynamic Classifier Chains using Random Decision Trees [5].

– ML-XGB: A single multi-label XGBoost model introduced in Section 3.1.

– XDCC: Our Dynamic Classifier Chain with ML-XGB models as base clas-
sifiers.

– XDCC cumulated: The cumulated version of DCC introduced in Sec-
tion 3.2.

The evaluated datasets in Table 2 cover a wide variety of application areas
for multi-label classification. The number of labels vary between a few (6) and
hundreds (374). The number of labels per instance (cardinality) is usually low
in comparison (<10), but can raise up to 26 (CAL500). All datasets came with
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Table 2: Datasets, # of instances, labels, cardinality, # of distinct label combi-
nations.

dataset instances labels cardinality distinct dataset instances labels cardinality distinct

emotions 593 6 1.869 27 genbase 662 27 1.252 32
scene 2407 6 1.074 15 medical 978 45 1.245 94
flags 194 7 3.392 54 enron 1702 53 3.378 753
yeast 2417 14 4.237 198 bibtex 7395 159 2.402 2856
birds 645 19 1.014 133 CAL500 502 174 26.044 502
tmc2007 28596 22 2.158 1341

predefined train-tests splits which were used for the final evaluation. Parameters
were tuned in terms of obtaining best F1 on randomly chosen validation set
containing 20% of the train set.2

4.1 Evaluation Measures

From the large variety of evaluation measures that exist for MLC the most in-
teresting ones for analyzing our proposed methods are Hamming accuracy (HA)
and subset accuracy (SA). Hamming accuracy denotes the accuracy of predict-
ing individual labels averaged over all labels, whereas subset accuracy measures
the ability of a classifiers of predicting exactly the true label combination for
an instance. In the case of predicting a large amount of labels, subset accuracy
is often of limited use since it often evaluates to zero. Hence, we additionally
consider example-based F1 as measure especially for the parameter tuning. It
can be considered as a compromise between Hamming and subset accuracy and
was also used by Nam et al. [9, 10] as surrogate loss for subset accuracy. More
formally, the comparison between true y and predicted ŷ for a test instance x
is evaluated to (with I as indicator function)

SA = I [y = ŷ] HA =
1

N

N∑
j=1

I [yj = ŷj ] F1 =
2
∑N
j=1 yj ŷj∑N

j=1 yj +
∑N
j=1 ŷj

As Dembczyński et al. [2] indicate, HA and SA are orthogonal to each other.
From a probabilistic perspective, to predict the true label combination requires
to find the mode of the joint label distribution, whereas it is sufficient to find
the modes of the marginal label distributions for Hamming accuracy. If there
are dependencies between labels, both modes do not have to coincide. In conse-
quence, an approach such as BR is sufficient if one is interested in good HA (or
there are no dependencies). CC, especially if using the same base learner and

2 The following parameters were tuned by grid-search: number of trees {100, 300,
500}, max tree depth {5, 10, 20, 30, 50}, percentage labels {0.1, 0.2, 0.3} for RDT,
max tree depth {5, 10, 20, 50, 100}, number of boosting rounds {10, 20, 50, 100},
learning rate {0.1, 0.2, 0.3} for XDCC, ML-XGB, BR, CC, split methods in Table 1
for XDCC, ML-XGB.
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Fig. 2: Comparison with respect to length of the chain on yeast wrt. Hamming
and subset accuracy.
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Fig. 3: Heat maps of the development of the predictions of positive and negative
labels, left and right side of the bar, respectively, from the first to last round
given as fraction of the total number of positive and negative predictions (last
row, respectively).

configuration as its BR counterpart, cannot be expected to improve over BR
regarding Hamming. On the other hand, the reverse behaviour can be expected
for SA. Hence, the trade-off between both measures and the relation to BR can
serve us to assess the ability of considering label dependencies.

4.2 Results

As described in Section 3.2, XDCC can provide a meaningful prediction after
each round, which is a major advantage over CC in terms of computational costs.
Moreover, by subsequently refining its predictions based on previous predictions,
we expected to advance especially in terms of SA. Figure 2 shows measures HA,
SA and training times for different lengths of the chain on yeast. CC and
XDCC were trained with optimal parameters for CC for a fair comparison of
the computational times. Note that length 1 corresponds to ML-XGB when
the same parameter were used. The first observation is that, as expected, HA
and SA increase with increasing length for the standard XDCC variant until
a little bit further than the average cardinality of 4 of the dataset. If we add
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Table 3: Predictive performance and training times comparison. Shown are the
average ranks over the 10 datasets and the ranks over these in brackets.

Method HA SA F1 Train time

BR 2.20 (1) 3.45 (4) 3.00 (2) 3.00 (3)
CC 3.05 (3) 2.60 (1) 3.30 (3) 3.30 (4)
RDT-DCC 5.10 (6) 4.05 (5) 3.60 (5) –

ML-XDB 2.90 (2) 3.20 (3) 3.35 (4) 1.10 (1)
XDCCcum 3.15 (4) 3.05 (2) 2.45 (1) 2.60 (2)
XDCCstd 4.60 (5) 4.65 (6) 5.30 (6) ”

the cumulated predictions, the performances converge much faster. Yet, there
is a clear improvement visible for SA, which indicates that XDCCcum is able
to directly benefit from the previous predictions in order to match the correct
label combinations. The cumulated predictions are also decisive to surpass CC.
Interestingly, the training costs of CC are also never reached although the same
XGBoost parameters were used.

The point where train times of CC are reached by XDCC are further in-
vestigated in Figure 4. It shows the ratio of XDCCcum to CC for the different
datasets (connected lines) and chain lengths. CAL500 around (0.1,1.4) is not
shown for convenience. The diagram shows that XDCC only takes longer than
CC on four datasets and only for the last rounds. For three of these datasets
XDCC does not reach CC’s F1. As already shown in Figure 2, XDCCcum only

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
train time ratio XDCC/CC

0.90

0.95
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1.10
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 X
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Fig. 4: Train time ratios between XDCCcum and CC in relation to their ratio
with respect to F1 for nine datasets. For instance, all points below x = 1 and
y = 1 indicate XDCCcum models which consume less training time but perform
worse than CC w.r.t. F1.
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improves in the first rounds, and sometimes there is even a tendency to decrease.
The progress of predicting the labels is also depicted in Figure 3. It visualizes
that positive labels are generally predicted in earlier rounds, as expected from
the design of the split functions. As shown previously, this behaviour is deci-
sive for the fast convergence and hence the possibility to end the training and
prediction processes already in early rounds.

Table 3 also includes a comparison to the RDT-DCC baseline. The first ob-
servation is the strong baseline achieved by BR regarding Hamming, as partially
expected in Section 4.1. In the same way, CC is best in terms of SA. However,
ML-XGB performs second regarding HA and XDCCcum is second regarding SA,
which suggests that the proposed approach is able to trade-off between both
extremes. This is also confirmed by the best position in terms of F1. RDT is the
worst performing approach and is even sometimes surpassed by XDCCstd which
is only included for showing the effect of cumulative predictions.

5 Conclusions

We have proposed in this work XDCC, an adaptation of extreme gradient boosted
trees which integrate dynamic chain classifier. XDCC predicts labels along the
chain in a dynamic order which adapts to each test instance individually. It
was shown that the positive labels are predominantly predicted at the begin-
ning of the process, which allows XDCC to achieve its maximum performance
already after a few rounds. This allows XDCC to reduce the length of the chain,
which together with the multi-target formulation of XDCC leads to substantial
improvements in comparison to binary relevance and classifier chains regard-
ing computational costs, often even if the full chain is processed. The length of
the chain also trades-off between the two orthogonal objectives of BR and CC,
leading to in average the best results in terms of example-based F1.

We will consider in the future to specifically adapt our approach to the set-
ting of large number of labels, e.g. by integrating some of the sparse techniques
proposed in [14, 20]. Since the number of associated labels per instance is usu-
ally not affected by the increasing number of labels, it will be interesting to see
how XDCC will behave with respect to computational costs, but also regarding
the exploitation of label dependencies since the size of the (dependency) chains
should remain of the same size. In order to actually benefit computationally from
these short chains, we are planning to include a virtual label which indicates the
end of the training and prediction process, similar to the idea of the calibrating
label in pairwise learning [7].
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