arXiv:2006.04229v2 [cs.CL] 9 Jun 2020

PRE-TRAINING POLISH TRANSFORMER-BASED LANGUAGE
MODELS AT SCALE

A PREPRINT
Stawomir Dadas Michat Perelkiewicz
National Information Processing Institute National Information Processing Institute
Warsaw, Poland Warsaw, Poland
sdadas@opi.org.pl mperelkiewicz@opi.org.pl
Rafal Poswiata

National Information Processing Institute
Warsaw, Poland
rposwiata@opi.org.pl

June 11, 2020

ABSTRACT

Transformer-based language models are now widely used in Natural Language Processing (NLP).
This statement is especially true for English language, in which many pre-trained models utilizing
transformer-based architecture have been published in recent years. This has driven forward the state
of the art for a variety of standard NLP tasks such as classification, regression, and sequence labeling,
as well as text-to-text tasks, such as machine translation, question answering, or summarization. The
situation have been different for low-resource languages, such as Polish, however. Although some
transformer-based language models for Polish are available, none of them have come close to the
scale, in terms of corpus size and the number of parameters, of the largest English-language models.
In this study, we present two language models for Polish based on the popular BERT architecture.
The larger model was trained on a dataset consisting of over 1 billion polish sentences, or 135GB
of raw text. We describe our methodology for collecting the data, preparing the corpus, and pre-
training the model. We then evaluate our models on thirteen Polish linguistic tasks, and demonstrate
improvements over previous approaches in eleven of them.

Keywords Language Modeling - Natural Language Processing

1 Introduction

Unsupervised pre-training for Natural Language Processing (NLP) has gained popularity in recent years. The goal
of this approach is to train a model on a large corpus of unlabeled text, and then use the representations the model
generates as an input for downstream linguistic tasks. The initial popularization of these methods was related to the
successful applications of pre-trained word vectors (embeddings), the most notable of which include Word2Vec [31],
GloVe [35], and FastText [5]. These representations have contributed greatly to the development of NLP. However,
one of the main drawbacks of such tools was that the static word vectors did not encode contextual information. The
problem was addressed in later studies by proposing context-dependent representations of words based on pre-trained
neural language models. For this purpose, several language model architectures which utilize bidirectional long short-
term memory (LSTM) layers have been introduced. The popular models such as ELMo [36], ULMFiT [18], and
Flair [1], have led to significant improvements in a wide variety of linguistic tasks. Shortly after, Devlin et al. [16]
introduced BERT - a different type of language model based on transformer [43] architecture. Instead of predicting
the next word in a sequence, BERT is trained to reconstruct the original sentence from one in which some tokens have
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been replaced by a special mask token. Since the text representations generated by BERT have proved to be effective
for NLP problems - even those which were previously considered challenging, such as question answering or common
sense reasoning - more focus has been put on transformer-based language models. As a result, in the last two years
we have seen a number of new methods based on that idea, with some modifications in the architecture or the training
objectives. The approaches that have gained wide recognition include RoBERTa [27], Transformer-XL [13], XLNet
[47], Albert [25], and Reformer [20].

The vast majority of research on both transformer-based language models and transfer learning for NLP is targeted
toward the English language. This progress does not translate easily to other languages. In order to benefit from recent
advancements, language-specific research communities must adapt and replicate studies conducted in English to their
native languages. Unfortunately, the cost of training state-of-the-art language models is growing rapidly [34], which
makes not only individual scientists, but also some research institutions unable to reproduce experiments in their own
languages. Therefore, we believe that it is particularly important to share the results of research - especially pre-trained
models, datasets, and source code of the experiments - for the benefit of the whole scientific community. In this article,
we describe our methodology for training two language models for Polish language based on BERT architecture. The
smaller model follows the hyperparameters of an English-language BERT-base model, and the larger version follows
the BERT-large model. To the best of our knowledge, the latter is the largest language model for Polish available to
date, both in terms of the number of parameters (355M) and the size of the training corpus (135GB). We have released
both pre-trained models publiclyll. We evaluate our models on several linguistic tasks in Polish, including nine from
the KLEJ benchmark [39], and four additional tasks. The evaluation covers a set of typical NLP problems, such as
binary and multi-class classification, textual entailment, semantic relatedness, ranking, and Named Entity Recognition
(NER).

1.1 Language-specific and multilingual transformer-based models

In this section we provide an overview of models based on the transformer architecture for languages other than En-
glish. Apart from English, the language on which NLP research is most focused currently is Chinese. This is reflected
in the number of pre-trained models available [46, |9, |16, 42]. Other languages for which we found publicly avail-
able pre-trained models included: Arabic [3], Dutch [14, [15], Finnish [44], French [30, 26], German, Greek, Italian,
Japanese, Korean, Malaysian, Polish, Portuguese [41], Russian [24], Spanish [6], Swedish, Turkish, and Vietnamese
[32]. Models covering a few languages of the same family are also available, such as SlavicBERT (Bulgarian, Czech,
Polish, and Russian) [4]] and NordicBERTHA (Danish, Norwegian, Swedish, and Finnish). The topic of massive multi-
lingual models covering tens, or in some cases more than a hundred languages, has attracted more attention in recent
years. The original BERT model [16] was released along with a multilingual version covering 104 languages. XLM
[7] (fifteen, seventeen and 100 languages) and XLM-R [8] (100 languages) were released in 2019. Although it was
possible to use these models for languages in which no monolingual models were available, language-specific pre-
training usually leads to better performance. To date, two BERT-base models have been made available for Polish:
HerBERT [39] and Polberd, both of which utilize BERT-base architecture.

1.2 Contributions

Our contributions are as follows: 1) We trained two transformer-based language models for Polish, consistent with
the BERT-base and BERT-large architectures. To the best of our knowledge, the second model is the largest language
model trained for Polish to date, both in terms of the number of parameters and the size of the training corpus. 2)
We proposed a method for collecting and pre-processing the data from the Common Crawl database to obtain clean,
high-quality text corpora. 3) We conducted a comprehensive evaluation of our models on thirteen Polish linguistic
tasks, comparing them to other available transformer-based models, as well as recent state-of-the-art approaches. 4)
We made the source code of our experiments available to the public, along with the pre-trained models.

2 Language model pre-training

In this section, we describe our methodology for collecting and pre-processing the data used for training BERT-base
language models. We then present the details of the training, explaining our procedure and the selection of hyperpa-
rameters used in both models.

"https://github.com/sdadas/polish-roberta
“https://github.com/botxo/nordic_bert
Shttps://github.com/kldarek/polbert
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2.1 Training corpus

Transformer-based models are known for their high capacity [19, 22], which means that they can benefit from large
quantities of text. An important step in the process of creating a language model, therefore, is to collect a sufficiently
large text corpus. We have taken into account that the quality of the text used for training will also affect the final
performance of the model. The easiest way to collect a large language-specific corpus is to extract it from Common
Crawl - a public web archive containing petabytes of data crawled from web pages. The difficulty with this approach is
that web-based data is often noisy and unrepresentative of typical language use, which could eventually have a negative
impact on the quality of the model. In response to this, we have developed a procedure for filtering and cleaning the
Common Crawl] data to obtain a high-quality web corpus. The procedure is as follows:

1. We download full HTML pages (WARC files in Common Crawl), and use the resulting metadata to filter the
documents written in Polish language.

2. We use Newspaper3i] - a tool which implements a number of heuristics for extracting the main content of
the page, discarding any other text such as headers, footers, advertisements, menus, or user comments.

3. We then remove all texts shorter than 100 characters. Additionally, we identify documents containing the
words: ‘przegladarka’, ‘ciasteczka’, ‘cookies’, or ‘javascript’. The presence of these words may indicate that
the extracted content is a description of a cookie policy, or default content for browsers without JavaScript
enabled. We discard all such texts if they are shorter than 500 characters.

4. In the next step, we use a simple statistical language model (KenLM [17]), trained on a small Polish language
corpus to assess the quality of each extracted document. For each text, we compute the perplexity value and
discard all texts with perplexity higher than 1000.

5. Finally, we remove all duplicated texts.

The full training corpus we collected is approximately 135GB in size, and is composed of two components: the web
part and the base part. For the web part, which amounts to 115GB of the corpus, we downloaded three monthly dumps
of Common Crawl data, from November 2019 to January 2020, and followed the pre-processing steps described above.
The base part, which comprises the remaining 20GB, is composed of publicly available Polish text corpora: the Polish
language version of Wikipedia (1.5GB), the Polish Parliamentary Corpus (5GB), and a number of smaller corpora
from the CLARIN (http://clarin-pl.eu) and OPUS (http://opus.nlpl.eu) projects, as well as Polish books
and articles.

2.2 Training procedure

The authors of the original BERT paper [16] proposed two versions of their transformer-based language model: BERT-
large (more parameters and higher computational cost), and BERT-base (fewer parameters, more computationally
efficient). To train the models for Polish language, we adapted the same architectures. Let L denote the number of
encoder blocks, H denote the hidden size of the token representation, and A denote the number of attention heads.
Specifically, we used L = 12, H = 768, A = 12 for the base model, and L. = 24, H = 1024, A = 16 for the
large model. The large model was trained on the full 135GB text corpus, and the base model on only the 20GB
base part. The training procedure we employed is similar to the one suggested in the ROBERTa pre-training approach
[27]. Originally, BERT utilized two training objectives - Masked Language Modeling (MLM), and Next Sentence
Prediction (NSP). We trained our models with the MLM objective, since it has been shown that NSP fails to improve
the performance of the pre-trained models on downstream tasks [27]. We also used dynamic token masking, and
trained the model with a larger batch size than the original BERT. The base model was trained with a batch size of
8000 sequences for 125 000 training steps: the large model was trained with a batch size of 30 000 sequences for
50 000 steps. The reason for using such a large batch size for the bigger model is to stabilize the training process.
During our experiments, we observed significant variations in training loss for smaller batch sizes, indicating that the
initial combination of learning rate and batch size had caused an exploding gradient problem. To address the issue, we
increased the batch size until the loss stabilized.

Both models were pre-trained with the Adam optimizer using the following optimization hyperparameters: ¢ =
le—6,51 = 0.9,82 = 0.98. We utilized a learning rate scheduler with linear decay. The learning rate is first in-
creased for a warm-up phase of 10 000 update steps to reach a peak of 7e—4, and then linearly decreased for the
remainder of the training. We also mimicked the dropout approach of the original BERT model: a dropout of 0.1 is
applied on all layers and attention weights. The maximum length of a sequence was set to 512 tokens. We do not
combine sentences from the training corpus: each is treated as a separate training sample. To encode input sequences

*https://newspaper.readthedocs.io/en/latest/
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into tokens, we employed SentencePiece [23] Byte Pair Encoding (BPE) algorithm, and set the maximum vocabulary
size to 50 000 tokens.

3 Evaluation

In this section, we discuss the process and results of evaluating our language models on thirteen Polish downstream
tasks. Nine of these tasks constitute the recently developed KLEJ benchmark [39]; three of them have already been
introduced in Dadas et al. [12]; and the last, named entity recognition, was a part of the PolEval] evaluation challenge.
First, we compare the performance of our models with other Polish and multilingual language models evaluated on the
KLEJ benchmark. Next, we present detailed per-task results, comparing our models with the previous state-of-the-art
solutions for each of the tasks.

3.1 Task descriptions

NKJP (The National Corpus of Polish (Narodowy Korpus Jezyka Polskiego)) [37] is one of the largest text corpora
of the Polish language, consisting of texts from Polish books, news articles, web content, and transcriptions of spoken
conversations. A part of the corpus, known as the ‘one million subcorpus’, contains annotations of named entities
from six categories: ‘persName’, ‘orgName’, ‘geogName’, ‘placeName’, ‘date’, and ‘time’. The authors of the KLEJ
benchmark used this subset to create a named entity classification task [39]. First, they filtered out all sentences
containing entities of more than one type. Next, they randomly assigned sentences to train development and test sets
according to the rule that each named entity mentioned appears in only one of these splits. They undersample the
‘persName’ class, and merge the ‘date’ and ‘time’ classes to increase class balance. Finally, they selected sentences
without any named entity, and assigned them the ‘noEntity’ label. The resulting dataset consisted of 20 000 sentences
belonging to six classes. The task is to predict the presence and type of each named entity. Classification accuracy is
also reported.

8TAGS is a corpus created by Dadas et al. [12] for their study on the subject of sentence representations in Polish
language. This dataset was created automatically by extracting sentences from headlines and short descriptions of
articles posted on the Polish social network, wykop.pl. It contains approximately 50 000 sentences, all longer than
thirty characters, from eight popular categories: film, history, food, medicine, automotive, work, sport, and technology.
The task is to assign a sentence to one of these classes in which classification accuracy is the measure.

CBD (Cyberbullying Detection) [38] is a binary classification task, the goal of which is to determine whether a Twitter
message constitutes a case of cyberbullying or not. This was a sub-task of task 6 in the PolEval 2019 competition. The
dataset prepared by the competition’s organizers contains 11 041 tweets, extracted from nineteen of the most popular
Polish Twitter accounts in 2017. The F1-score was used to measure the performance of the models.

DYK ‘Did you know?’ (‘Czy wiesz?’) [28] is a dataset used for the evaluation and development of Polish language
question answering systems. It consists of 4721 question-answer pairs obtained from the Czy wiesz... Polish Wikipedia
project. The answer to each question was found in the linked Wikipedia article. Rybak et al. [39] used this dataset to
devise a binary classification task, the goal of which is to predict whether the answer to the given question is correct
or not [39]. Positive responses were additionally marked within larger fragments of responded text. Negative samples
were selected by the BPE token overlap between a question and a possible answer. The F1-score was also reported for
this task.

PSC The Polish Summaries Corpus [33] is a corpus of manually created summaries of Polish language news articles.
The dataset contains both abstract free-word summaries and extraction-based summaries created by selecting text
spans from the original documents. Based on PSC, [39] formulated a text-similarity task [39]. They generate positive
pairs by matching each extractive summary with the two least similar abstractive ones in the same article. Negative
pairs were obtained by finding the two most similar abstractive summaries for each extractive summary, but from
different articles. To calculate the similarity between summaries, they used the BPE token overlap. The F1-score was
used for evaluation.

PolEmo2.0 [21]] is a corpus of consumer reviews obtained from four domains: medicine, hotels, products, and school.
Each of the reviews is annotated with one of four labels: positive, negative, neutral, or ambiguous. In general, the
task is to choose the correct label, although here two special versions of the task are distinguished: PolEmo2.0-IN and
PolEmo2.0-OUT. In PolEmo2.0-IN, both the training and test sets come from the same domains, namely medicine and
hotels. In PolEmo2.0-OUT, however, the test set comes from the product and school domains. In both cases, accuracy
was used for evaluation.

Shttp://2018.poleval.pl/index.php/tasks
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Allegro Reviews (AR) [39] is a sentiment analysis dataset of product reviews from the e-commerce marketplace,
allegro.pl. Each review has a rating on a five-point scale, in which one is negative, and five is positive. The task is to
predict the rating of a given review. The macro-average of the mean absolute error per class (WMAE) is applied for
evaluation.

CDSC (The Compositional Distributional Semantics Corpus) [45] is a corpus of 10 000 human-annotated sentence
pairs for semantic relatedness and entailment, in which image captions from forty-six thematic groups were used as
sentences. Two tasks are proposed based on this dataset. The CDSC-R problem involves predicting the relatedness
between a pair of sentences, on a scale of zero to five, in which zero indicates that the sentences are not related, and five
indicates that they are highly related. In this task, the Spearman correlation is used as an evaluation measure. CDSC-
E’s task is to classify whether the premise entails the hypothesis (entailment), negates the hypothesis (contradiction),
or is unrelated (neutral). For this task, accuracy is reported.

SICK [12] is a manually translated Polish language version of the English Natural Language Inference (NLI) cor-
pus, SICK (Sentences Involving Compositional Knowledge) [29], and consists of 10 000 sentence pairs. As with the
CDSC dataset, two tasks can also be distinguished here. SICK-R is the task of predicting the probability distribution
of relatedness scores (ranging from 1 to 5) for the sentence pair, in which the Spearman correlation is used for evalu-
ation. SICK-E is a multiclass classification problem in which the relationship between two sentences is classified as
entailment, contradiction, or neutral. Accuracy is used once again to measure performance.

PolEval-NER 2018 [2] was task 2 in the PolEval 2018 competition, the goal of which was to detect and assign the
correct category and subcategory (if applicable) to a found named entity. In this study the task was simplified, as only
the main categories had to be found. The effectiveness of the models is verified by the F1-score measure. This task
was prepared on the basis of the NKJP dataset previously presented.

3.2 Task-specific fine-tuning

To evaluate our language models on downstream tasks, we fine-tuned them separately for each task. In our experiments,
we encounter three types of problem: classification, regression, and Named Entity Recognition (NER). In classification
tasks, the model is expected to predict a label from a set of two or more classes. Regression concerns the prediction
of a continuous numerical value. NER is a special case of sequence tagging, i.e. predicting a label for each element
in a sequence. The dataset for each problem consists of training and test parts, and in most cases also includes a
validation part. The general fine-tuning procedure is as follows: we train our model on the training part of the dataset
for a specific number of epochs. If the validation set is available, we compute the validation loss after each epoch, and
select the model checkpoint with the best validation loss. For datasets without a validation set, we select the last epoch
checkpoint. Then, we perform an evaluation on the test set using the selected checkpoint.

In the case of classification and regression tasks, we attach an additional fully-connected layer to the output of the
[CLS] token, which always remains in the first position of a sequence. For classification, the number of outputs for
this layer is equal to the number of classes, and the softmax activation function is used. For regression, it is a linear
layer with a single output. The models are fine-tuned with the Adam optimizer using the following hyperparameters:
€ = le—6,51 = 0.9, 52 = 0.98. A learning rate scheduler with polynomial decay is utilized. The first 6% of the
training steps are reserved for the warm-up phase, in which the learning rate is gradually increased to reach a peak of
le—5. By default, we train for ten epochs with a batch size of sixteen sequences. The specific fine-tuning steps and
exceptions to the procedure are discussed below:

* Classification on imbalanced datasets — Some of the binary classification datasets considered in the evaluation,
such as CBD, DYK, and PSC, are imbalanced, which means that they contain significantly fewer samples of the first
class than of the second class. To counter this imbalance, we utilize a simple resampling technique: samples for the
minority class in the training set are duplicated, and some samples for the majority class are randomly discarded. We
set the resampling factor to 3 for the minority class, and 1 (DYK, PSC) or 0.75 (CBD) respectively for the majority
class. Additionally, we increase the batch size for those tasks to thirty-two.

* Regression - In many cases, a regression task is restricted to a specific range of values for which the prediction is
valid. For example, Allegro Reviews contains user reviews with ratings between one and five stars. For fine-tuning,
we scale all the outputs of regression models to be within the range of [0, 1], and then rescale them to their original
range during evaluation. Before rescaling, any negative prediction is set to 0, and any prediction greater that 1 is
limited to 1.

* Named entity recognition - Since sequence tagging, in which the model is expected to generate per-token pre-
dictions, is different from simple classification or regression tasks, we decided to adapt an existing named entity
recognition approach for fine-tuning using our language models. For this purpose, we employed a method from
Shibuya and Hovy [40], who proposed a transformer-based named entity recognition model with a Conditional Ran-
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Table 1: Results on the KLEJ benchmark.

Model Average | NKJP CDSC-E CDSC-R CBD PE2-1 PE2-O DYK PSC AR
Base models

mBERT 79.5 91.4 93.8 92.9 40.0 85.0 66.6 642 979 833
SlavicBERT 79.8 93.3 93.7 93.3 43.1  87.1 67.6 574 983 843
XLM-100 79.9 91.6 93.7 91.8 425 85.6 69.8 63.0 968 842
XLM-17 80.2 91.9 93.7 92.0 448 86.3 70.6 61.8 963 845
HerBERT 80.5 92.7 92.5 91.9 503 89.2 76.3 52.1 953 845
XLM-R base 81.5 92.1 94.1 93.3 51.0 895 74.7 558 982 852
Polbert 81.7 93.6 93.4 93.8 527 874 71.1 59.1 986 852
Our model 85.3 93.9 94.2 94.0 66.7 90.6 76.3 659 988 87.8
Large models

XLM-R large 87.5 94.1 94.4 94.7 70.6 924 81.0 72.8 989 88.4
Our model 87.8 94.5 93.3 94.9 711 928 82.4 734 98.8 88.8

dom Fields (CRF) inference layer, and multiple Viterbi-decoding steps to handle nested entities. In our experiments,
we used the same hyperparameters as the authors.

3.3 Results and discussion

In this section, we demonstrate the results of evaluating our language models on downstream tasks. We repeated
the fine-tuning of the models for each task five times. The scores reported are the median values of those five runs.
Table [l demonstrates the evaluation results on the KLEJ benchmark, in comparison with other available Polish and
multilingual transformer-based models. The results of other approaches are taken from the KLEJ leaderboard. We
split the table into two sections, comparing the BERT-base and BERT-large architectures separately. We can observe
that there is a wider selection of base models, and most of them are multilingual, such as the original multilingual
BERT (mBERT) [16], SlavicBERT [4], XLM [7], and XLM-R [8]. The only models pre-trained specifically for Polish
language are HerBERT [39] and Polbert. Among the base models, our approach outperforms others by a significant
margin. In the case of large models, only the XLM-RoBERTa (XLM-R) pre-trained model has been available until
now. XLM-RoBERTza is a recently published multilingual transformer trained on 2.5TB of data in 100 languages. It
has been shown to be highly competitive against monolingual models. A direct comparison with our Polish language
model demonstrates a consistent advantage of our model - it has achieved better results in seven of the nine tasks
included in the KLEJ benchmark.

TablePlshows a more detailed breakdown of the evaluation results, and includes all the tasks from the KLEJ benchmark,
and four additional tasks: SICK-R, SICK-R, 8TAGS, and PolEval-NER 2018. For each task, we define the task type
(classification, regression, or sequence tagging), the metric used for evaluation, the previous state-of-the-art, and
our results including the absolute difference to the SOTA. The competition between XLM-R and our large model
dominates the results, since both models have led to significant improvements in linguistic tasks for Polish language.
In some cases, the improvement over previous approaches is greater than 10%. For example, the CDB task was a part
of the PolEval 2019 competition, in which the winning solution by Czapla et al. [10] achieved an F1-score of 58.6.
Both our model and the XLLM-R large model outperform that by at least twelve points, achieving an F1-score of over
70. The comparison for the named entity recognition task is also interesting. The previous state-of-the-art solution by
Dadas [11] is a model that combined neural architecture with external knowledge sources, such as entity lexicons or
a specialized entity linking module based on data from Wikipedia. Our language model managed to outperform this
method by 3.8 points without using any structured external knowledge. In summary, our model has demonstrated an
improvement over existing methods in eleven of the thirteen tasks.

4 Conclusions

We have presented two transformer-based language models for Polish, pre-trained using a combination of publicly
available text corpora and a large collection of methodically pre-processed web data. We have shown the effectiveness
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Table 2: Detailed results for Polish language downstream tasks. In some cases, we used the datasets and task definitions
from the KLEJ benchmark, which are different from the original tasks they were based on (they have been reformulated
or otherwise modified by the benchmark authors). We denote such tasks with (KLEJ) to emphasize that the evaluation
was performed on the KLEJ version of the data. The abbreviated task types are: C - classification, R - regression, and
ST - sequence tagging.

Task Metric Previous SOTA n?(?;zl Il;f:)fig;
Multi-class classification

NKIJP (KLEJ) C | Accuracy | XLM-R large [8] 94.1 93.9 (-0.2) | 94.5 (+0.4)
8TAGS C | Accuracy | ELMo [12] 714 | 77.2 (+5.8) | 80.8 (+9.4)
Binary classification

CBD C | Fl-score | XLM-Rlarge[§] 70.6 | 66.7(-2.9) | 71.1 (+0.5)
DYK (KLEJ) C | Fl-score | XLM-R large [8] 72.8 65.9 (-6.9) | 73.4 (+0.6)
PSC (KLE)) C | Fl-score | XLM-R large [8] 98.9 | 98.8(-0.1) | 98.8 (-0.1)
Sentiment analysis

PolEmo2.0-IN C | Accuracy | XLM-Rlarge [8§] 924 | 90.6 (-1.8) | 92.8 (+0.4)
PolEmo2.0-OUT C | Accuracy | XLM-R large [8] 81.0 | 76.3(-4.7) | 82.4 (+1.4)
Allegro Reviews R | I-wMAE | XLM-R large [8] 88.4 | 87.8(-1.0) | 88.8 (+0.4)
Textual entailment

CDSC-E C | Accuracy | XLM-Rlarge [§] 944 | 94.2(-0.2) | 93.3 (-1.1)
SICK-E C | Accuracy | LASER [12] 82.2 | 86.1 (+3.9) | 87.7 (+5.5)
Semantic relatedness

CDSC-R R | Spearman | XLM-R large [8] 94.7 | 94.0(=0.7) | 94.9 (+0.2)
SICK-R R | Spearman | USE [12] 75.8 | 82.3(+6.5) | 85.6 (+9.8)
Named entity recognition

Poleval-NER 2018 ST | Fl-score | Dadas [11] 86.2 | 87.9(+1.7) | 90.0 (+3.8)

of our models by comparing them with other transformer-based approaches and recent state-of-the-art approaches.
We conducted a comprehensive evaluation on a wide set of Polish linguistic tasks, including binary and multi-class
classification, regression, and sequence labeling. In our experiments, the larger model performed better than other
methods in eleven of the thirteen cases. To accelerate research on NLP for Polish language, we have released the
pre-trained models publicly.
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Project Languages Paper Project URL

Arabic-BERT Arabic - github.com/alisafaya/Arabic-BERT)
AraBERT Arabic [31] github.com/aub-mind/arabert
ClueCorpus2020  Chinese [46]  |github.com/CLUEbenchmark/CLUECorpus2020
Chinese BERT Chinese [9] github.com/ymcui/Chinese-BERT-wwm
Google BERT Chinese [16]  |github.com/google-research/bert

ERNIE 2.0 Chinese [42] |github.com/PaddlePaddle/ERNIE
BERTje Dutch [14]  |github.com/wietsedv/bertje

RoBBERT Dutch [15]  ipieter.github.io/blog/robbert

Finnish BERT Finnish [44] github.com/TurkuNLP/FinBERT
CamemBERT French [30] camembert-model.fr

FlauBERT French [26]  github.com/getalp/Flaubert

German BERT German - deepset.ai/german-bert

GreekBERT Greek - github.com/nlpaueb/greek-bert
UmBERTo Italian - github.com/musixmatchresearch/umberto
GilBERTo Italian - github.com/idb-ita/GilBERT0

Japanese BERT Japanese - github.com/yoheikikuta/bert-japanese
Japanese BERT Japanese - github.com/cl-tohoku/bert-japanese
KoBERT Korean - github.com/SKTBrain/KoBERT

Malaya Malaysian - github.com/huseinzol05/Malaya/

Nordic BERT Nordic (4) - github.com/botxo/nordic_bert

PolBERT Polish - github.com/kldarek/polbert

HerBERT Polish [39] klejbenchmark.com

Portuguese BERT  Portuguese [41]  github.com/neuralmind-ai/portuguese-bert
RuBERT Russian [24]  \github.com/deepmipt/DeepPavlov
SlavicBERT Slavic (4) [4] github.com/deepmipt/Slavic-BERT-NER
BETO Spanish [6] github.com/dccuchile/beto

Swedish BERT Swedish - github.com/Kungbib/swedish-bert-models
BERTSsson Swedish - huggingface.co/jannesg/bertsson
BERTurk Turkish - github.com/stefan-it/turkish-bert
PhoBERT Vietnamese [32] github.com/VinAIResearch/PhoBERT
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