Skip to main content

A Deep Prior Approach to Magnetic Particle Imaging

  • Conference paper
  • First Online:
Book cover Machine Learning for Medical Image Reconstruction (MLMIR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12450))

Abstract

Magnetic particle imaging (MPI) is a tracer-based imaging modality with an increasing number of potential medical applications exploiting the nonlinear magnetization behavior of magnetic nanoparticles. The image reconstruction is obtained by solving an ill-posed inverse problem requiring regularization. The number of data-driven machine learning techniques applying to inverse problems is continuously increasing. While more classical regularization techniques, e.g., variational methods, are commonly used in MPI, we focus on a novel deep image prior (DIP) approach. Initially developed for image processing tasks, it has been shown to be applicable to inverse problems. In this work, we investigate the DIP approach in the context of MPI. Its behavior is illustrated and compared to standard reconstruction methods on a 2D phantom data set obtained from the Bruker preclinical MPI system.

S. Dittmer and T. Kluth—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et. al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Cheng, Z., Gadelha, M., Maji, S., Sheldon, D.: A Bayesian perspective on the deep image prior. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  3. Dax, A.: On row relaxation methods for large constrained least squares problems. SIAM J. Sci. Comput. 14(3), 570–584 (1993)

    Article  MathSciNet  Google Scholar 

  4. Dittmer, S., Kluth, T., Maass, P., Otero Baguer, D.: Regularization by architecture: a deep prior approach for inverse problems. J. Math. Imaging Vis. 62(3), 456–470 (2019). https://doi.org/10.1007/s10851-019-00923-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, Mathematics and its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  Google Scholar 

  6. Erb, W., et al.: Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging. Inverse Prob. 34(5), 21 (2018). 055012

    Article  MathSciNet  Google Scholar 

  7. Franke, J., Lacroix, R., Lehr, H., Heidenreich, M., Heinen, U., Schulz, V.: MPI flow analysis toolbox exploiting pulsed tracer information - an aneurysm phantom proof. Int. J. Magn. Part. Imaging 3(1) (2017). https://journal.iwmpi.org/index.php/iwmpi/article/view/36

  8. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)

    Article  Google Scholar 

  9. Gong, K., Han, P., El Fakhri, G., Ma, C., Li, Q.: Arterial spin labeling mr image denoising and reconstruction using unsupervised deep learning. NMR Biomed. e4224 (2019)

    Google Scholar 

  10. Haegele, J., et al.: Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology 265(3), 933–938 (2012)

    Article  Google Scholar 

  11. Hashimoto, F., Ohba, H., Ote, K., Teramoto, A., Tsukada, H.: Dynamic pet image denoising using deep convolutional neural networks without prior training datasets. IEEE Access 7, 96594–96603 (2019)

    Article  Google Scholar 

  12. Khandhar, A., et al.: Evaluation of peg-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9(3), 1299–1306 (2017)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kluth, T.: Mathematical models for magnetic particle imaging. Inverse Prob. 34(8), 083001 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kluth, T., Jin, B.: Enhanced reconstruction in magnetic particle imaging by whitening and randomized SVD approximation. Phys. Med. Biol. 64(12), 125026 (2019)

    Article  Google Scholar 

  16. Kluth, T., Jin, B.: L1 data fitting for robust numerical reconstruction in magnetic particle imaging: quantitative evaluation on Open MPI dataset. arXiv: 2001.06083 (2020, preprint)

  17. Kluth, T., Jin, B., Li, G.: On the degree of ill-posedness of multi-dimensional magnetic particle imaging. Inverse Prob. 34(9), 095006 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kluth, T., Maass, P.: Model uncertainty in magnetic particle imaging: nonlinear problem formulation and model-based sparse reconstruction. Int. J. Magn. Part. Imaging 3(2), 10 (2017). ID 1707004

    Google Scholar 

  19. Knopp, T.: Github MDF. https://github.com/MagneticParticleImaging/MDF. Accessed 16 Nov 2018

  20. Knopp, T., Gdaniec, N., Möddel, M.: Magnetic particle imaging: from proof of principle to preclinical applications. Phys. Med. Biol. 62(14), R124 (2017)

    Article  Google Scholar 

  21. Knopp, T., Hofmann, M.: Online reconstruction of 3D magnetic particle imaging data. Phys. Med. Biol. 61(11), N257–67 (2016)

    Article  Google Scholar 

  22. Knopp, T., et al.: MDF: magnetic particle imaging data format, pp. 1–15. ArXiv e-prints 1602.06072v6, January 2018. http://arxiv.org/abs/1602.06072v6, article, MDF

  23. Konkle, J., Goodwill, P., Hensley, D., Orendorff, R., Lustig, M., Conolly, S.: A convex formulation for magnetic particle imaging x-space reconstruction. PLoS One 10(10), e0140137 (2015)

    Article  Google Scholar 

  24. Lampe, J., et al.: Fast reconstruction in magnetic particle imaging. Phys. Med. Biol. 57(4), 1113–1134 (2012)

    Article  Google Scholar 

  25. Murase, K., et al.: Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia. Open J. Med. Imaging 5(02), 85 (2015)

    Article  Google Scholar 

  26. Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J.: Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans. Med. Imaging 31(6), 1289–1299 (2012)

    Article  Google Scholar 

  27. Salamon, J., et al.: Magnetic particle/magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach. PloS One 11(6), 14 (2016). e0156899

    Article  Google Scholar 

  28. Them, K., et al.: Sensitivity enhancement in magnetic particle imaging by background subtraction. IEEE Trans. Med. Imag. 35(3), 893–900 (2016)

    Article  Google Scholar 

  29. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Deep image prior. CoRR abs/1711.10925 (2017). http://arxiv.org/abs/1711.10925

  30. Van Veen, D., Jalal, A., Price, E., Vishwanath, S., Dimakis, A.G.: Compressed sensing with deep image prior and learned regularization. arXiv preprint arXiv:1806.06438 (2018)

  31. Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54(5), L1 (2009)

    Article  Google Scholar 

  32. Yokota, T., Kawai, K., Sakata, M., Kimura, Y., Hontani, H.: Dynamic pet image reconstruction using nonnegative matrix factorization incorporated with deep image prior. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3126–3135 (2019)

    Google Scholar 

  33. Yu, E.Y., et al.: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 17(3), 1648–1654 (2017)

    Article  Google Scholar 

Download references

Acknowledgements:

The authors would like to thank P. Szwargulski and T. Knopp from the University Medical Center Hamburg-Eppendorf for their support in conducting the experiments and providing the MPI dataset. Dittmer, Kluth, and Otero Baguer acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 281474342/GRK2224/1 “Pi\(^3\): Parameter Identification - Analysis, Algorithms, Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Dittmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dittmer, S., Kluth, T., Baguer, D.O., Maass, P. (2020). A Deep Prior Approach to Magnetic Particle Imaging. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61598-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61597-0

  • Online ISBN: 978-3-030-61598-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics