Skip to main content

Hierarchical Modeling with Neurodynamical Agglomerative Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Abstract

We propose a new analysis technique for neural networks, Neurodynamical Agglomerative Analysis (NAA), an analysis pipeline designed to compare class representations within a given neural network model. The proposed pipeline results in a hierarchy of class relationships implied by the network representation, i.e. a semantic hierarchy analogous to a human-made ontological view of the relevant classes. We use networks pretrained on the ImageNet benchmark dataset to infer semantic hierarchies and show the similarity to human-made semantic hierarchies by comparing them with the WordNet ontology. Further, we show using MNIST training experiments that class relationships extracted using NAA appear to be invariant to random weight initializations, tending toward equivalent class relationships across network initializations in sufficiently parameterized networks.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - GRK 2340.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bach, S., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  2. Raghu, M., et al.: SVCCA: singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  3. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  4. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  5. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 231–243. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_10

    Chapter  Google Scholar 

  6. Li, Y., et al.: Convergent learning: do different neural networks learn the same representations?. In: FE@ NIPS (2015)

    Google Scholar 

  7. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  Google Scholar 

  8. Jaeger, H.: Controlling recurrent neural networks by conceptors. arXiv preprint arXiv:1403.3369 (2014)

  9. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  12. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marino, M., Schröter, G., Heidemann, G., Hertzberg, J. (2020). Hierarchical Modeling with Neurodynamical Agglomerative Analysis. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics