Skip to main content

Permutation Learning in Convolutional Neural Networks for Time-Series Analysis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

  • 3105 Accesses

Abstract

This study proposes a novel module in the convolutional neural networks (CNN) framework named permutation layer. With the new layer, we are particularly targeting time-series tasks where 2-dimensional CNN kernel loses its ability to capture the spatially co-related features. Multivariate time-series analysis consists of stacked input channels without considering the order of the channels resulting in an unsorted “2D-image”. 2D convolution kernels are not efficient at capturing features from these distorted as the time-series lacks spatial information between the sensor channels. To overcome this weakness, we propose learnable permutation layers as an extension of vanilla convolution layers which allow to interchange different sensor channels such that sensor channels with similar information content are brought together to enable a more effective 2D convolution operation. We test the approach on a benchmark time-series classification task and report the superior performance and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  3. Da Li, X., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Industr. Inf. 10(4), 2233–2243 (2014)

    Article  Google Scholar 

  4. Chadha, G.S., Krishnamoorthy, M., Schwung, A.: Time series based fault detection in industrial processes using convolutional neural networks. In: 45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019, vol. 1, pp. 173–178 (2019)

    Google Scholar 

  5. Jiang, G., et al.: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Trans. Industr. Electron. 66(4), 3196–3207 (2019)

    Article  Google Scholar 

  6. Ince, T., et al.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Industr. Electron. 63(11), 7067–7075 (2016). https://doi.org/10.1109/TIE.2016.2582729. ISSN: 0278-0046

    Article  Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Redmon, J., et al.: You only look once: unified, real-time object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Marshall, A.W., Olkin, I., Arnold, B.C.: Doubly stochastic matrices. Inequalities: Theory of Majorization and Its Applications. SSS, pp. 29–77. Springer, New York (2010). https://doi.org/10.1007/978-0-387-68276-1_2

    Chapter  Google Scholar 

  11. Mena, G., et al.: Learning latent permutations with Gumbel-Sinkhorn networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Byt3oJ-0W

  12. Cruz, R.S., et al.: Visual permutation learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3100–3114 (2019). https://doi.org/10.1109/tpami.2018.2873701

    Article  Google Scholar 

  13. Helmbold, D.P., Warmuth, M.K.: Learning permutations with exponential weights. J. Mach. Learn. Res. 10, 1705–1736 (2009). ISSN: 1532-4435. http://dl.acm.org/citation.cfm?id=1577069.1755841

    MathSciNet  MATH  Google Scholar 

  14. Yang, J., et al.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, vol. 15, pp. 3995–4001 (2015)

    Google Scholar 

  15. Liu, C.-L., Hsaio, W.-H., Tu, Y.-C.: Time series classification with multivariate convolutional neural network. IEEE Trans. Industr. Electron. 66(6), 4788–4797 (2019). https://doi.org/10.1109/TIE.2018.2864702. ISSN: 0278-0046

    Article  Google Scholar 

  16. Trask, A., et al.: Neural arithmetic logic units. In: Advances in Neural Information Processing Systems, pp. 8035–8044 (2018)

    Google Scholar 

  17. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)

    Article  Google Scholar 

  19. Park, P., et al.: Fault detection and diagnosis using combined autoencoder and long short-term memory network. Sensors 19(21), 4612 (2019)

    Article  Google Scholar 

  20. Rieth, C.A., et al.: Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation (2017). https://doi.org/10.7910/dvn/6c3jr1

  21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 448–456. JMLR.org (2015)

    Google Scholar 

  22. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS, vol. 15, p. 275 (2011)

    Google Scholar 

  23. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv e-prints (2014). arXiv:1412.6980

  25. Iqbal, R., et al.: Fault detection and isolation in industrial processes using deep learning approaches. IEEE Trans. Industr. Inf. 15(5), 3077–3084 (2019). https://doi.org/10.1109/TII.2019.2902274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavneet Singh Chadha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chadha, G.S., Kim, J., Schwung, A., Ding, S.X. (2020). Permutation Learning in Convolutional Neural Networks for Time-Series Analysis. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics