
ar
X

iv
:1

80
4.

09
81

2v
2

 [
st

at
.M

L
]

 1
2

A
ug

 2
01

9

Improved Classification Based on Deep Belief

Networks

Jaehoon Koo

Northwestern University

Evanston, IL, USA

jaehoonkoo2018@u.northwestern.edu

Diego Klabjan

Northwestern University

Evanston, IL, USA

d-klabjan@northwestern.edu

Abstract—For better classification generative models are used
to initialize the model and model features before training a
classifier. Typically it is needed to solve separate unsupervised and
supervised learning problems. Generative restricted Boltzmann
machines and deep belief networks are widely used for unsuper-
vised learning. We developed several supervised models based
on DBN in order to improve this two-phase strategy. Modifying
the loss function to account for expectation with respect to
the underlying generative model, introducing weight bounds,
and multi-level programming are applied in model development.
The proposed models capture both unsupervised and supervised
objectives effectively. The computational study verifies that our
models perform better than the two-phase training approach.

Index Terms—deep learning, neural networks, classification

I. INTRODUCTION

Restricted Boltzmann machine (RBM), an energy-based

model to define an input distribution, is widely used to

extract latent features before classification. Such an approach

combines unsupervised learning for feature modeling and

supervised learning for classification. Two training steps are

needed. The first step, called pre-training, is to model features

used for classification. This can be done by training RBM that

captures the distribution of input. The second step, called fine-

tuning, is to train a separate classifier based on the features

from the first step [1]. This two-phase training approach for

classification is also used for deep networks. Deep belief

networks (DBN) are built with stacked RBMs, and trained in

a layer-wise manner [2]. Two-phase training based on a deep

network consists of DBN and a classifier on top of it.

The two-phase training strategy has three possible problems.

1) It requires two training processes; one for training RBMs

and one for training a classifier. 2) It is not guaranteed

that the modeled features in the first step are useful in the

classification phase since they are obtained independently of

the classification task. 3) It is an effort to decide which

classifier is the best for each problem. Therefore, there is a

need for a method that can conduct feature modeling and

classification concurrently [1].

To resolve these problems, recent papers suggest to trans-

form RBM to a model that can deal with both unsupervised

and supervised learning. Since RBM calculate the joint and

conditional probabilities, the suggested prior models combine

a generative and discriminative RBM. Consequently, this

hybrid discriminative RBM is trained concurrently for both

objectives by summing the two contributions [1], [3]. In a sim-

ilar way a self-contained RBM for classification is developed

by applying the free-energy function based approximation to

RBM, which was used for a supervised learning method,

reinforcement learning [4]. However, these approaches are

limited to transforming RBM that is a shallow network.

In this study, we developed alternative models to solve a

classification problem based on DBN. Viewing the two-phase

training as two separate optimization problems, we applied

optimization modeling techniques in developing our models.

Our first approach is to design new objective functions. We

design an expected loss function based on p(h|x) built by DBN

and the loss function of the classifier. Second, we introduce

constraints that bound the DBN weights in the feed-forward

phase. The constraints keep a good representation of input

as well as regularize the weights during updates. Third, we

applied bilevel programming to the two-phase training method.

The bilevel model has a loss function of the classifier in

its objective function but it constrains the DBN values to

the optimal to phase-1. This model searches possible optimal

solutions for the classification objective only where DBN

objective solutions are optimal.

Our main contributions are several classification models

combining DBN and a loss function in a coherent way. In

the computational study we verify that the suggested models

perform better than the two-phase method.

II. LITERATURE REVIEW

The two-phase training strategy has been applied to many

classification tasks on different types of data. Two-phase train-

ing with RBM and support vector machine (SVM) has been

explored in classification tasks on images, documents, and

network intrusion data [5], [6], [7], [8]. Logistic regression

replacing SVM has been explored [9], [10]. Gehler et al. [11]

used the 1-nearest neighborhood classifier with RBM to solve

a document classification task. Hinton and Salakhutdinov [2]

suggested DBN consisting of stacked RBMs that is trained in

a layer-wise manner. Two-phase method using DBN and deep

neural network has been studied to solve various classification

problems such as image and text recognition [2], [12], [13].

Recently, this approach has been applied to motor imagery

http://arxiv.org/abs/1804.09812v2

classification in the area of brain–computer interface [14],

biomedical research, classification of Cytochrome P450 1A2

inhibitors and non-inhibitors [15], and web spam classification

that detects web pages deliberately created to manipulate

search rankings [16]. All these papers rely on two distinct

phases, while our models assume a holistic view of both

aspects.

Many studies have been conducted to improve the problems

of two-phase training. Most of the research has been focused

on transforming RBM so that the modified model can achieve

generative and discriminative objectives at the same time.

Schmah et al. [17] proposed a discriminative RBM method,

and subsequently classification is done in the manner of a

Bayes classifier. However, this method cannot capture the

relationship between the classes since the RBM of each class

is trained separately. Larochelle et al. [1], [3] proposed a self-

contained discriminative RBM framework where the objective

function consists of the generative learning objective p(x, y),
and the discriminative learning objective, p(y|x). Both dis-

tributions are derived from RBM. Similarly, a self-contained

discriminative RBM method for classification is proposed [4].

The free-energy function based approximation is applied in

the development of this method, which is initially suggested

for reinforcement learning. This prior paper relying on RBM

conditional probability while we handle general loss functions.

Our models also hinge on completely different principles.

III. BACKGROUND

a) Restricted Boltzmann Machines: RBM is an energy-

based probabilistic model, which is a restricted version of

Boltzmann machines (BM) that is a log-linear Markov Ran-

dom Field. It has visible nodes x corresponding to input

and hidden nodes h matching the latent features. The joint

distribution of the visible nodes x ∈ R
J and hidden variable

h ∈ R
I is defined as

p(x, h) =
1

Z
e−E(x,h), E(x, h) = −hWx− ch− bx

where W ∈ R
I×J , b ∈ R

J , and c ∈ R
I are the model

parameters, and Z is the partition function. Since units in a

layer are independent in RBM, we have the following form of

conditional distributions:

p(h|x) =
I∏

i=1

p(hi|x), p(x|h) =
J∏

j=1

p(xj |h).

For binary units where x ∈ {0, 1}J and h ∈ {0, 1}I , we

can write p(hi = 1|h) = σ(ci + Wix) and p(xj = 1|h) =
σ(bj+Wjx) where σ() is the sigmoid function. In this manner

RBM with binary units is an unsupervised neural network

with a sigmoid activation function. The model calibration

of RBM can be done by minimizing negative log-likelihood

through gradient descent. RBM takes advantage of having the

above conditional probabilities which enable to obtain model

samples easier through a Gibbs sampling method. Contrastive

divergence (CD) makes Gibbs sampling even simpler: 1) start

a Markov chain with training samples, and 2) stop to obtain

samples after k steps. It is shown that CD with a few steps

performs effectively [18], [19].

b) Deep Belief Networks: DBN is a generative graphical

model consisting of stacked RBMs. Based on its deep structure

DBN can capture a hierarchical representation of input data.

Hinton et al. (2006) introduced DBN with a training algorithm

that greedily trains one layer at a time. Given visible unit x

and ℓ hidden layers the joint distribution is defined as [18],

[20]

p(x, h1, · · · , hℓ) = p(hℓ−1, hℓ)

(
ℓ−2∏

k=1

p(hk|hk+1)

)
p(x|h1).

Since each layer of DBN is constructed as RBM, training each

layer of DBN is the same as training a RBM.

Classification is conducted by initializing a network through

DBN training [12], [20]. A two-phase training can be

done sequentially by: 1) pre-training, unsupervised learning

of stacked RBM in a layer-wise manner, and 2) fine-tuning,

supervised learning with a classifier. Each phase requires

solving an optimization problem. Given training dataset D =
{(x(1), y(1)), . . . , (x(|D|), y(|D|))} with input x and label y, the

pre-training phase solves the following optimization problem

at each layer k

min
θk

1

|D|

|D|∑

i=1

[
−log p(x

(i)
k ; θk)

]

where θk = (Wk, bk, ck) is the RBM model parameter that

denotes weights, visible bias, and hidden bias in the energy

function, and x
(i)
k is visible input to layer k corresponding

to input x(i). Note that in layer-wise updating manner we

need to solve ℓ of the problems from the bottom to the top

hidden layer. For the fine-tuning phase we solve the following

optimization problem

min
φ

1

|D|

|D|∑

i=1

[
L(φ; y(i), h(x(i)))

]
(1)

where L() is a loss function, h denotes the final hidden

features at layer ℓ, and φ denotes the parameters of the

classifier. Here for simplicity we write h(x(i)) = h(x
(i)
ℓ).

When combining DBN and a feed-forward neural networks

(FFN) with sigmoid activation, all the weights and hidden bias

parameters among input and hidden layers are shared for both

training phases. Therefore, in this case we initialize FFN by

training DBN.

IV. PROPOSED MODELS

We model an expected loss function for classification.

Considering classification of two phase method is conducted

on hidden space, the probability distribution of the hidden

variables obtained by DBN is used in the proposed models.

The two-phase method provides information about modeling

parameters after each phase is trained. Constraints based on

the information are suggested to prevent the model param-

eters from deviating far from good representation of input.

Optimal solution set for unsupervised objective of the two-

phase method is good candidate solutions for the second phase.

Bilevel model has the set to find optimal solutions for the

phase-2 objective so that it conducts the two-phase training at

one-shot.
a) DBN Fitting Plus Loss Model: We start with a naive

model of summing pre-trainning and fine-tuning objectives.

This model conducts the two-phase training strategy simul-

taneously; however, we need to add one more hyperparam-

eter ρ to balance the impact of both objectives. The model

(DBN+loss) is defined as

min
θL,θDBN

Ey,x[L(θL; y, h(x))] + ρ Ex[− log p(x; θDBN)]

and empirically based on training samples D,

min
θL,θDBN

1

|D|

|D|∑

i=1

[
L(θL; y

(i), h(x(i)))− ρ log p(x(i); θDBN)
]

(2)

where θL, θDBN are the underlying parameters. Note that

θL = φ from (1) and θDBN = (θk)k=1. This model has

already been proposed if the classification loss function is

based on the RBM conditional distribution [1], [3].
b) Expected Loss Model with DBN Boxing: We first de-

sign an expected loss model based on conditional distribution

p(h|x) obtained by DBN. This model conducts classification

on the hidden space. Since it minimizes the expected loss, it

should be more robust and thus it should yield better accuracy

on data not observed. The mathematical model that minimizes

the expected loss function is defined as

min
θL,θDBN

Ey,h|x[L(θL; y, h(θDBN ; x))]

and empirically based on training samples D,

min
θL,θDBN

1

|D|

|D|∑

i=1

[
∑

h

p(h|x(i))L(θL; y
(i), h(θDBN ;x(i)))

]
.

With notation h(θDBN ;x(i)) = h(x(i)) we explicitly show

the dependency of h on θDBN . We modify the expected

loss model by introducing a constraint that sets bounds on

DBN related parameters with respect to their optimal values.

This model has two benefits. First, the model keeps a good

representation of input by constraining parameters fitted in

the unsupervised manner. Also, the constraint regularizes the

model parameters by preventing them from blowing up while

being updated. Given training samples D the mathematical

form of the model (EL-DBN) reads

min
θL,θDBN

1

|D|

|D|∑

i=1

[
∑

h

p(h|x(i))L(θL; y
(i), h(θDBN ;x(i)))

]

s.t. |θDBN − θ∗DBN | ≤ δ

where θ∗DBN are the optimal DBN parameters and δ is a

hyperparameter. This model needs a pre-training phase to

obtain the DBN fitted parameters.
c) Expected Loss Model with DBN Classification Boxing:

Similar to the DBN boxing model, this expected loss model

has a constraint that the DBN parameters are bounded by

their optimal values at the end of both phases. This model

regularizes parameters with those that are fitted in both the

unsupervised and supervised manner. Therefore, it can achieve

better accuracy even though we need an additional training to

the two-phase trainings. Given training samples D the model

(EL-DBNOPT) reads

min
θL,θDBN

1

|D|

|D|∑

i=1

[
∑

h

p(h|x(i))L(θL; y
(i), h(θDBN ;x(i)))

]

s.t. |θDBN − θ∗DBN−OPT | ≤ δ
(3)

where θ∗DBN−OPT are the optimal values of DBN parameters

after two-phase training and δ is a hyperparameter.

d) Feed-forward Network with DBN Boxing: We also

propose a model based on boxing constraints where FFN is

constrained by DBN output. The mathematical model (FFN-

DBN) based on training samples D is

min
θL,θDBN

1

|D|

|D|∑

i=1

[
L(θL; y

(i), h(θDBN ;x(i)))
]

s.t. |θDBN − θ∗DBN | ≤ δ.

(4)

e) Feed-forward Network with DBN Classification Box-

ing: Given training samples D this model (FFN-DBNOPT),

which is a mixture of (3) and (4), reads

min
θL,θDBN

1

|D|

|D|∑

i=1

[
L(θL; y

(i), h(θDBN ;x(i)))
]

s.t. |θDBN − θ∗DBN−OPT | ≤ δ.

f) Bilevel Model: We also apply bilevel programming to

the two-phase training method. This model searches optimal

solutions to minimize the loss function of the classifier only

where DBN objective solutions are optimal. Possible candi-

dates for optimal solutions of the first level objective function

are optimal solutions of the second level objective function.

This model (BL) reads

min
θL,θ∗

DBN

Ey,x[L(θL; y, h(θ∗DBN ; x))]

s.t. θ∗DBN = argmin
θDBN

Ex[−log p(x; θDBN)]

and empirically based on training samples,

min
θL,θ∗

DBN

1

|D|

|D|∑

i=1

[
L(θL; y

(i), h(θ∗DBN ;x(i)))
]

s.t. θ∗DBN = argmin
θDBN

1

|D|

|D|∑

i=1

[
−log p(x(i); θDBN)

]
.

One of the solution approaches to bilevel programming is to

apply Karush–Kuhn–Tucker (KKT) conditions to the lower

level problem. After applying KKT to the lower level, we

obtain

min
θL,θ∗

DBN

Ey,x[L(θL; y, h(θ∗DBN ; x))]

s.t. ∇θDBN
Ex[−log p(x; θDBN)|θ∗

DBN
] = 0.

Furthermore, we transform this constrained problem to an

unconstrained problem with a quadratic penalty function:

min
θL,θ∗

DBN

Ey,x[L(θL; y, h(θ∗DBN ; x))]+

µ

2
||∇θDBN

Ex[−log p(x; θDBN)]|θ∗

DBN
||2

(5)

where µ is a hyperparameter. The gradient of the objective

function is derived in the appendix.

V. COMPUTATIONAL STUDY

To evaluate the proposed models classification tasks on three

datasets were conducted: the MNIST hand-written images 1,

the KDD’99 network intrusion dataset (NI)2, and the isolated

letter speech recognition dataset (ISOLET) 3. The experimen-

tal results of the proposed models on these datasets were

compared to those of the two-phase method.

In FFN, the sigmoid functions in the hidden layers and

the softmax function in the output layer were chosen with

negative log-likelihood as a loss function of the classifiers.

We selected the hyperparameters based on the settings used

in [21], which were fine-tuned. We first implemented the two-

phase method with DBNs of 1, 2, 3 and 4 hidden layers to

find the best configuration for each dataset, and then applied

the best configuration to the proposed models.

Implementations were done in Theano using GeForce GTX

TITAN X. The mini-batch gradient descent algorithm was used

to solve the optimization problems of each model. To calculate

the gradients of each objective function of the models Theano’s

built-in functions, ’theano.tensor.grad’, was used. We denote

by DBN-FFN the two-phase approach.

A. MNIST

The task on the MNIST is to classify ten digits from 0 to

9 given by 28 × 28 pixel hand-written images. The dataset

is divided in 60,000 samples for training and validation, and

10,000 samples for testing. The hyperparameters are set as:

there are 1,000 hidden units in each layer; the number of pre-

training epochs per layer is 100 with the learning rate of 0.01;

the number of fine-tuning epochs is 300 with the learning rate

of 0.1; the batch size is 10; and ρ in the DBN+loss and µ

in the BL model are diminishing during epochs. Note that

DBN+Loss and BL do not require pre-training.

DBN-FFN with three-hidden layers of size, 784-1000-1000-

1000-10, was the best, and subsequently we compared it to the

proposed models with the same size of the network. We com-

puted the means of the classification errors and their standard

deviations for each model averaged over 5 random runs. In

each table, we stressed in bold the best three models with

1http://yann.lecun.com/exdb/mnist/
2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3https://archive.ics.uci.edu/ml/datasets/ISOLET

Mean Sd.

DBN-FFN 1.33% 0.03%

DBN+loss 1.84% 0.14%

EL-DBN 1.46% 0.05%

EL-DBNOPT 1.33% 0.04%

FFN-DBN 1.34% 0.04%

FFN-DBNOPT 1.32% 0.03%

BL 1.85% 0.07%

TABLE I: Classification errors with respect to the best DBN

structure for the MNIST.

ties broken by deviation. In Table 1, the best mean test error

rate was achieved by FFN-DBNOPT, 1.32%. Furthermore, the

models with the DBN classification constraints, EL-DBNOPT

and FFN-DBNOPT, perform similar to, or better than the

two-phase method. This shows that DBN classification boxing

constraints regularize the model parameters by keeping a good

representation of input.

B. Network Intrusion

The classification task on NI is to distinguish between nor-

mal and bad connections given the related network connection

information. The preprocessed dataset consists of 41 input

features and 5 classes, and 4,898,431 examples for training and

311,029 examples for testing. The experiments were conducted

on 20%, 30%, and 40% subsets of the whole training set,

which were obtained by stratified random sampling. The

hyperparameters are set as: there are 15 hidden units in each

layer; the number of pre-training epochs per layer is 100 with

the learning rate of 0.01; the number of fine-tuning epochs is

500 with the learning rate of 0.1; the batch size is 1,000; and

ρ in the DBN+loss and µ in the BL model are diminishing

during epochs.

On NI the best structure of DBN-FFN was 41-15-15-5 for

all three datasets. Table 2 shows the experimental results of the

proposed models with the same network as the best DBN-FFN.

BL performed the best in all datasets, achieving the lowest

mean classification error without the pre-training step. The

difference in the classification error between our best model,

BL, and DBN-FFN is statistically significant since the p-values

are 0.03, 0.01, and 0.03 for 20%, 30%, and 40% datasets,

respectively. This showed that the model being trained con-

currently for unsupervised and supervised purpose can achieve

better accuracy than the two-phase method. Furthermore, both

EL-DBNOPT and FFN-DBNOPT yield similar to, or lower

mean error rates than DBN-FFN in all of the three subsets.

C. ISOLET

The classification on ISOLET is to predict which letter-

name was spoken among the 26 English alphabets given 617

input features of the related signal processing information. The

dataset consists of 5,600 for training, 638 for validation, and

1,559 examples for testing. The hyperparameters are set as:

there are 1,000 hidden units in each layer; the number of pre-

training epochs per layer is 100 with the learning rate of 0.005;

http://yann.lecun.com/exdb/mnist/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/ISOLET

20% dataset 30% dataset

Mean Sd. Mean Sd.

DBN-FFN 8.14% 0.12% 8.18% 0.12%

DBN+loss 8.07% 0.06% 8.13% 0.09%

EL-DBN 8.30% 0.09% 8.27% 0.07%

EL-DBNOPT 8.14% 0.14% 8.15% 0.15%

FFN-DBN 8.17% 0.09% 8.20% 0.08%

FFN-DBNOPT 8.07% 0.12% 8.12% 0.11%

BL 7.93% 0.09% 7.90% 0.11%

40% dataset

Mean Sd.

DBN-FFN 8.06% 0.02%

DBN+loss 8.05% 0.05%

EL-DBN 8.29% 0.14%

EL-DBNOPT 8.08% 0.10%

FFN-DBN 8.07% 0.11%

FFN-DBNOPT 7.95% 0.11%

BL 7.89% 0.10%

TABLE II: Classification errors with respect to the best DBN

structure for NI

Mean Sd.

DBN-FFN 3.94% 0.22%

DBN+loss 4.38% 0.20%

EL-DBN 3.91% 0.18%

EL-DBNOPT 3.75% 0.14%

FFN-DBN 3.94% 0.19%

FFN-DBNOPT 3.75% 0.13%

BL 4.43% 0.18%

TABLE III: Classification errors with respect to the best DBN

structure for ISOLET.

the number of fine-tuning epochs is 300 with the learning rate

of 0.1; the batch size is 20; and ρ in the DBN+loss and µ in

the BL model are diminishing during epochs.

In this experiment the shallow network performed better

than the deep network; 617-1000-26 was the best structure for

DBN-FFN. One possible reason for this is its small size of

training samples. EL models performed great for this instance.

EL-DBNOPT achieved the best mean classification error, tied

with FFN-DBNOPT. With the same training effort, EL-DBN

achieved a lower mean classification error and smaller standard

deviation than the two-phase method, DBN-FFN. Considering

a relatively small sample size of ISOLET, EL shows that it

yields better accuracy on unseen data as it minimizes the

expected loss, i.e., it generalizes better. In this data set, p-value

is 0.07 for the difference in the classification error between our

best model, FFN-DBNOPT, and DBN-FFN.

VI. CONCLUSIONS

DBN+loss performs better than two-phase training DBN-

FFN only in one instance. Aggregating two unsupervised

and supervised objectives without a specific treatment is not

effective. Second, the models with DBN boxing, EL-DBN and

FFN-DBN, do not perform better than DBN-FFN in almost all

datasets. Regularizing the model parameters with unsupervised

learning is not so effective in solving a supervised learning

problem. Third, the models with DBN classification boxing,

EL-DBNOPT and FFN-DBNOPT, perform better than DBN-

FFN in almost all of the experiments. FFN-DBNOPT is

consistently one of the best three performers in all instances.

This shows that classification accuracy can be improved by

regularizing the model parameters with the values trained for

unsupervised and supervised purpose. One drawback of this

approach is that one more training phase to the two-phase ap-

proach is necessary. Last, BL shows that one-step training can

achieve a better performance than two-phase training. Even

though it worked in one instance, improvements to current

BL can be made such as applying different solution search

algorithms, supervised learning regularization techniques, or

different initialization strategies.

REFERENCES

[1] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, “Learning
algorithms for the classification restricted Boltzmann machine,” Journal

of Machine Learning Research, vol. 13, pp. 643–669, 2012.

[2] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[3] H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted Boltzmann machines,” in International Conference on Machine

Learning (ICML) 25, (Helsinki, Finland), pp. 536–543, 2008.

[4] S. Elfwing, E. Uchibe, and K. Doya, “Expected energy-based restricted
Boltzmann machine for classification,” Neural Networks, vol. 64, pp. 29–
38, 2015.

[5] E. P. Xing, R. Yan, and A. G. Hauptmann, “Mining associated text and
images with dual-wing Harmoniums,” in Conference on Uncertainty in

Artificial Intelligence (UAI), vol. 21, (Edinburgh, Scotland), pp. 633–
641, 2005.

[6] M. Norouzi, M. Ranjbar, and G. Mori, “Stacks of convolutional restricted
Boltzmann machines for shift-invariant feature learning,” in IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPR), (Miami, FL, USA), pp. 2735–2742, 2009.

[7] M. A. Salama, H. F. Eid, R. A. Ramadan, A. Darwish, and A. E.
Hassanien, “Hybrid intelligent intrusion detection scheme,” Advances

in Intelligent and Soft Computing, pp. 293–303, 2011.

[8] G. E. Dahl, R. P. Adams, and H. Larochelle, “Training restricted
Boltzmann machines on word observations,” in International Conference

on Machine Learning (ICML) 29, vol. 29, (Edinburgh, Scotland, UK),
pp. 679–686, 2012.

[9] A. Mccallum, C. Pal, G. Druck, and X. Wang, “Multi-conditional
learning : generative / discriminative training for clustering and classifi-
cation,” in National Conference on Artificial Intelligence (AAAI), vol. 21,
pp. 433–439, 2006.

[10] K. Cho, A. Ilin, and T. Raiko, “Improved learning algorithms for
restricted Boltzmann machines,” in Artificial Neural Networks and

Machine Learning (ICANN), vol. 6791, Springer, Berlin, Heidelberg,
2011.

[11] P. V. Gehler, A. D. Holub, and MaxWelling, “The rate adapting Poisson
(RAP) model for information retrieval and object recognition,” in
International Conference on Machine Learning (ICML) 23, vol. 23,
(Pittsburgh, PA, USA), pp. 337–344, 2006.

[12] Y. Bengio and P. Lamblin, “Greedy layer-wise training of deep net-
works,” in Advances in Neural Information Processing Systems (NIPS)

19, vol. 20, pp. 153–160, MIT Press, 2007.

[13] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief
networks for natural language understanding,” IEEE/ACM Transactions

on Audio, Speech, and Language Processing, vol. 22, no. 4, pp. 778–
784, 2014.

[14] N. Lu, T. Li, X. Ren, and H. Miao, “A deep learning scheme for motor
imagery classification based on restricted Boltzmann machines,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 25,
pp. 566–576, 2017.

[15] L. Yu, X. Shi, and T. Shengwei, “Classification of Cytochrome P450
1A2 of inhibitors and noninhibitors based on deep belief network,”
International Journal of Computational Intelligence and Applications,
vol. 16, p. 1750002, 2017.

[16] Y. Li, X. Nie, and R. Huang, “Web spam classification method based on
deep belief networks,” Expert Systems With Applications, vol. 96, no. 1,
pp. 261–270, 2018.

[17] T. Schmah, G. E. Hinton, R. S. Zemel, S. L. Small, and S. Strother,
“Generative versus discriminative training of RBMs for classification of
fMRI images,” in Advances in Neural Information Processing Systems

(NIPS) 21, vol. 21, pp. 1409–1416, Curran Associates, Inc., 2009.

[18] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends

in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[19] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence.,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[20] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm
for deep belief nets.,” Neural computation, vol. 18, no. 7, pp. 1527–54,
2006.

[21] B. Wang and D. Klabjan, “Regularization for unsupervised deep neural
nets,” in National Conference on Artificial Intelligence (AAAI), vol. 31,
pp. 2681–2687, 2017.

[22] A. Fischer and C. Igel, “An introduction to restricted Boltzmann
machines,” Progress in Pattern Recognition, Image Analysis, Computer

Vision, and Applications, vol. 7441, pp. 14–36, 2012.

APPENDIX

DBN defines the joint distribution of the visible unit x and

the ℓ hidden layers, h1, h2, · · · , hℓ as

p(x, h1, · · · , hℓ) = p(hℓ−1, hℓ)

(
ℓ−2∏

k=0

p(hk|hk+1)

)

with h0 = x.

a) DBN Fitting Plus Loss Model: From Eq. (2), p(x) in

the second term of the objective function is approximated as

p(x; θDBN) =
∑

h1,h2,··· ,hℓ

p(x, h1, · · · , hℓ) ≈
∑

h1

p(x, h1).

b) Expected Loss Models: p(h|x) in the objective func-

tion is approximated as

p(hℓ|x) ≈ p(hℓ|x, h1, · · · , hℓ)

=
p(hℓ, hℓ−1, · · · , h1, x)

p(hℓ−1, hℓ−2, · · · , h1, x)

=
p(hℓ−1, hℓ)

(∏ℓ−2
k=0 p(h

k|hk+1)
)

p(hℓ−2, hℓ−1)
(∏ℓ−3

k=0 p(h
k|hk+1)

)

=
p(hℓ−1, hℓ)p(hℓ−2|hℓ−1)

p(hℓ−2, hℓ−1)

=
p(hℓ−1, hℓ)p(hℓ−2, hℓ−1)

p(hℓ−2, hℓ−1)p(hℓ−1)

= p(hℓ|hℓ−1).

c) Bilevel Model: From Eq. (5), ∇θDBN
log p(x) in the

objective function is approximated for i = 0, 1, · · · , ℓ as

[∇θDBN
log p(x)]i =

∂ log p(x)

∂ θiDBN

=
∂ log

(∑
h1,h2,··· ,hℓ p(x, h1, h2, · · · , hℓ)

)

∂ θiDBN

≈
∂ log (

∑
hi+1 p(hi, hi+1))

∂ θiDBN
(6)

where θDBN = (θ0DBN , θ2DBN , · · · , θiDBN , · · · θℓDBN). The

gradient of this approximated quantity is then the Hessian

matrix of the underlying RBM.

We write the approximated ||∇θDBN
− log p(x)||2 at the

layer i as

||[∇θDBN
− log p(x)]i||

2 ≈ ||
∂ − log (

∑
hi+1 p(hi, hi+1))

∂ θiDBN

||2

=

[(
∂ − log p(hi)

∂θi11

)2

+

(
∂ − log p(hi)

∂θi12

)2

+

· · ·+

(
∂ − log p(hi)

∂θinm

)2
]

where m and n denote dimensions of hi and hi+1 and θipq
denotes the pth and qth component of the θiDBN . The gradient

of the approximated ||∇θDBN
− log p(x)||2 at the layer i is

∂

θipq

(
∑

p,q

(
∂ − log p(hi)

∂θipq

)2
)

= 2

[(
∂ − log p(hi)

∂θi11

)(
∂2 − log p(hi)

∂θi11θ
i
pq

)
+

(
∂ − log p(hi)

∂θi12

)(
∂2 − log p(hi)

∂θi12∂θ
i
pq

)
+

· · ·+

(
∂ − log p(hi)

∂θipq

)(
∂2 − log p(hi)

∂θipq∂θ
i
pq

)
+

· · ·+

(
∂ − log p(hi)

∂θinm

)(
∂2 − log p(hi)

∂θinmθipq

)]

for p = 1, ...n, q = 1, ...m. This shows that the gradient of

the approximated ||∇θDBN
− log p(x)||2 in (5) is then the

Hessian matrix times the gradient of the underlying RBM. The

stochastic gradient of −log p(x) of RBM with binary input x

and hidden unit h with respect to θDBNwpq is

∂RBM

∂wpq

= p(hp = 1|x)xq −
∑

x

p(x)p(hp = 1|x)xq

where RBM denotes −log p(x) [22]. We derive the Hessian

matrix with respect to wpq as

∂2RBM

∂w2
pq

=
∂

wpq

[p(hp = 1|x)xq)]−
∑

x

∂

wpq

[p(x)p(hp = 1|x)xq)]

= σ(ñetp)(1− σ(ñetp))x
2
q −

∑

x

[
∂p(x)

∂wpq

p(hp = 1|x)xq+

p(x)σ(ñetp)(1− σ(ñetp))x
2
q],

∂2RBM

∂wpk∂wpq

=
∂

wpk

[p(hp = 1|x)xq)]−
∂

wpk

[
∑

x

p(x)p(hp = 1|x)xq)]

= σ(ñetp)(1− σ(ñetp))xqxk −
∑

x

[
∂p(x)

∂wpk

p(hp = 1|x)xq+

p(x)σ(ñetp)(1− σ(ñetp))xqxk],

∂2RBM

∂wkq∂wpq

=
∂

wkq

[p(hp = 1|x)xq)]−
∂

wkq

[
∑

x

p(x)p(hp = 1|x)xq]

= −
∑

x

[
∂p(x)

∂wkq

p(hp = 1|x)xq + p(x)
∂

∂wkq

[p(hp = 1|x)xq]],

∂2RBM

∂wkp∂wpq

= −
∑

x

[
∂p(x)

∂wkp

p(hp = 1|x)xq + p(x)]

where σ() is the sigmoid function, ñetp is
∑

q wpqxq+cp, and

cp is the hidden bias. Based on what we derive above we can

calculate the gradient of approximated ||[∇θDBN
−logp(x)]i||

2.

	I Introduction
	II Literature Review
	III Background
	IV Proposed Models
	V Computational Study
	V-A MNIST
	V-B Network Intrusion
	V-C ISOLET

	VI Conclusions
	References
	Appendix

