Skip to main content

Temporal Anomaly Detection by Deep Generative Models with Applications to Biological Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Abstract

An approach to anomaly detection is to use a partly disentangled representation of the latent space of a generative model. In this study, generative adversarial networks (GAN) are used as the normal data generator, and an additional encoder is trained to map data to the latent space. Then, a data anomaly can be detected by a reconstruction error and a position in the latent space. If the latent space is disentangled (in a sense that some latent variables are interpretable and can characterize the data), the anomaly is also characterized by the mapped position in the latent space. The present study proposes a method to characterize temporal anomalies in time series using Causal InfoGAN, proposed by Kurutach et al., to disentangle a state space of the dynamics of time-series data. Temporal anomalies are quantified by the transitions in the acquired state space. The proposed method is applied to four-dimensional biological dataset: morphological data of a genetically manipulated embryo. Computer experiments are conducted on three-dimensional data of the cell (nuclear) division dynamics in early embryonic development of C. elegans, which lead to the detection of morphological and temporal anomalies caused by the knockdown of lethal genes.

Supported by JSPS KAKENHI Grant Number 19K12164.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2180–2188 (2016)

    Google Scholar 

  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  3. Guo, Y., Liao, W., Wang, Q., Yu, L., Ji, T., Li, P.: Multidimensional time series anomaly detection: a GRU-based gaussian mixture variational autoencoder approach. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 95, pp. 97–112 (2018)

    Google Scholar 

  4. Ioffe, S., Szegedy., C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  5. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  6. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  7. Kurutach, T., T.A., Yang, G., Russell, S., Abbeel, P.: Learning plannable representations with causal InfoGAN. In: Advances in Neural Information Processing Systems, pp. 8747–8758 (2018)

    Google Scholar 

  8. Kyoda, K., et al.: WDDD: worm developmental dynamics database. Nucleic Acids Res. 41, D732–D737 (2012)

    Article  Google Scholar 

  9. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  10. Lin, Z., Thekumparampil, K.K., Fanti, G.C., Oh, S.: InfoGAN-CR: disentangling generative adversarial networks with contrastive regularizers. vol. abs/1906.06034 (2019)

    Google Scholar 

  11. Miyato, T., Kataoka, T., Koyama, M., Yoshida., Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  12. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth., U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. In: Medical Image Analysis, vol. 54, pp. 30–44 (2019)

    Google Scholar 

  13. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  14. Ueda, T., Seo, M., Nishikawa, I.: Data correction by a generative model with an encoder and its application to structure design. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 403–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_40

    Chapter  Google Scholar 

  15. Ueda, T., Seo, M., Tohsato, Y., Nishikawa, I.: Analysis of time series anomalies using causal InfoGAN and its application to biological data. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds.) ICNC-FSKD 2019. AISC, vol. 1074, pp. 609–617. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32456-8_67

    Chapter  Google Scholar 

  16. Yang, S., et al.: Phenotype analysis method for identification of gene functions involved in asymmetric division of caenorhabditis elegans. J. Comput. Biol. 24, 436–446 (2017)

    Article  Google Scholar 

  17. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar., V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining, pp. 727–736 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaya Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ueda, T., Tohsato, Y., Nishikawa, I. (2020). Temporal Anomaly Detection by Deep Generative Models with Applications to Biological Data. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics