
A PREPRINT - MARCH 3, 2020

EVONET: A NEURAL NETWORK FOR PREDICTING THE
EVOLUTION OF DYNAMIC GRAPHS

Changmin Wu
LIX, École Polytechnique
changmin.wu@polytechnique.edu

Giannis Nikolentzos
LIX, École Polytechnique
nikolentzos@lix.polytechnique.fr

Michalis Vazirgiannis
LIX, École Polytechnique and AUEB
mvazirg@lix.polytechnique.fr

ABSTRACT

Neural networks for structured data like graphs have been studied extensively in
recent years. To date, the bulk of research activity has focused mainly on static
graphs. However, most real-world networks are dynamic since their topology tends
to change over time. Predicting the evolution of dynamic graphs is a task of high
significance in the area of graph mining. Despite its practical importance, the
task has not been explored in depth so far, mainly due to its challenging nature.
In this paper, we propose a model that predicts the evolution of dynamic graphs.
Specifically, we use a graph neural network along with a recurrent architecture to
capture the temporal evolution patterns of dynamic graphs. Then, we employ a
generative model which predicts the topology of the graph at the next time step
and constructs a graph instance that corresponds to that topology. We evaluate the
proposed model on several artificial datasets following common network evolving
dynamics, as well as on real-world datasets. Results demonstrate the effectiveness
of the proposed model.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged in recent years as an effective tool for analyzing
graph-structured data [1, 2, 3, 4]. These architectures bring the expressive power of deep learning into
non-Euclidean data such as graphs, and have demonstrated convincing performance in several graph
mining tasks, including graph classification [5], link prediction [6], and community detection [7, 8].
So far, GNNs have been mainly applied to tasks that involve static graphs. However, most real-world
networks are dynamic, i. e., nodes and edges are added and removed over time. Despite the success
of GNNs in various applications, it is still not clear if these models are useful for learning in dynamic
scenarios. Although some models have been applied to this type of data, most studies have focused
on predicting a low-dimensional representation (i. e., embedding) of the graph for the next time step
[9, 10, 11, 12, 13, 14]. These representations can then be used in downstream tasks [9, 12, 15, 14].
However, predicting the topology of the graph (and not its low-dimensional representation) is a task
that has not been properly addressed yet.

Graph generation, another important task in graph mining, has attracted a lot of attention from the
deep learning community in recent years. The objective of this task is to generate graphs that exhibit
specific properties, e. g., degree distribution, node triangle participation, community structure, etc.
Traditionally, graphs are generated based on some network generation model such as the Erdős-Rényi
model. These models focus on modeling one or more network properties, and neglect the others.
Neural network approaches, on the other hand, can better capture the properties of graphs since they
follow a supervised approach [16, 17, 18]. These architectures minimize a loss function such as the
reconstruction error of the adjacency matrix or the value of a graph comparison algorithm.

Capitalizing on recent developments in neural networks for graph-structured data and graph gen-
eration, we propose in this paper, to the best of our knowledge, the first framework for predicting

1

ar
X

iv
:2

00
3.

00
84

2v
1

 [
cs

.L
G

]
 2

 M
ar

 2
02

0

A PREPRINT - MARCH 3, 2020

the evolution of the topology of networks in time. The proposed framework can be viewed as
an encoder-predictor-decoder architecture. The “encoder” network takes a sequence of graphs as
input and uses a GNN to produce a low-dimensional representation for each one of these graphs.
These representations capture structural information about the input graphs. Then, the “predictor”
network employs a recurrent architecture which predicts a representation for the future instance of the
graph. The “decoder” network corresponds to a graph generation model which utilizes the predicted
representation, and generates the topology of the graph for the next time step. The proposed model is
evaluated over a series of experiments on synthetic and real-world datasets, and is compared against
several baseline methods. To measure the effectiveness of the proposed model and the baselines,
the generated graphs need to be compared with the ground-truth graph instances using some graph
comparison algorithm. To this end, we use the Weisfeiler-Lehman subtree kernel which scales to
very large graphs and has achieved state-of-the-art results on many graph datasets [19]. Results show
that the proposed model yields good performance, and in most cases, outperforms the competing
methods.

The rest of this paper is organized as follows. Section 2 provides an overview of the related work and
elaborates our contribution. Section 3 introduces some preliminary concepts and definitions related to
the graph generation problem, followed by a detailed presentation of the components of the proposed
model. Section 4 evaluates the proposed model on several tasks. Finally, Section 5 concludes.

2 RELATED WORK

Our work is related to random graph models. These models are very popular in graph theory and
network science. The Erdős-Rényi model [20], the preferential attachment model [21], and the
Kronecker graph model [22] are some typical examples of such models. To predict how a graph
structure will evolve over time, the values of the parameters of these models can be estimated based
on the corresponding values of the observed graph instances, and then the estimated values can be
passed on to these models to generate graphs.

Other work along a similar direction includes neural network models which combine GNNs with
RNNs [13, 23, 14]. These models use GNNs to extract features from a graph and RNNs for
sequence learning from the extracted features. Other similar approaches do not use GNNs, but they
instead perform random walks or employ deep autoencoders [11, 12]. All these works focus on
predicting how the node representations or the graph representations will evolve over time. However,
some applications require predicting the topology of the graph, and not just its low-dimensional
representation. The proposed model constitutes the first step towards this objective.

3 EVONET: A NEURAL NETWORK FOR PREDICTING GRAPH EVOLUTION

In this Section, we first introduce basic concepts from graph theory, and define our notation. We then
present EvoNet, the proposed framework for predicting the evolution of graphs. Since the proposed
model comprises of several components, we describe all these components in detail.

3.1 PRELIMINARIES

Let G = (V,E) be an undirected, unweighted graph, where V is the set of nodes and E is the set
of edges. We will denote by n the number of vertices and by m the number of edges. We define a
permutation of the nodes of G as a bijective function π : V → V , under which any graph property
of G should be invariant. We are interested in the topology of a graph which is described by its
adjacency matrix Aπ ∈ Rn×n with a specific ordering of the nodes π1. Each entry of the adjacency
matrix is defined as Aπij = 1(π(vi),π(vj))∈E where vi, vj ∈ V . In what follows, we consider the
“topology”, “structure” and “adjacency matrix” of a graph equivalent to each other.

In many real-world networks, besides the adjacency matrix that encodes connectivity information,
nodes and/or edges are annotated with a feature vector, which we denote as X ∈ Rn×d and L ∈
Rm×d, respectively. Hence, a graph object can be also written in the form of a triplet G = (A,X,L).
In this paper, we use this triplet to represent all graphs. If a graph does not contain node/edge

1For simplicity, the ordering π will be omitted in what follows.

2

A PREPRINT - MARCH 3, 2020

Figure 1: Illustration of the proposed architecture

attributes, we assign attributes to it based on local properties (e. g., degree, k-core number, number of
triangles, etc).

An evolving network is a graph whose topology changes as a function of time. Interestingly, almost
all real-world networks evolve over time by adding and removing nodes and/or edges. For instance, in
social networks, people make and lose friends over time, while there are people who join the network
and others who leave the network. An evolving graph is a sequence of graphs {G0,G1, . . . , GT }where
Gt = (At, Xt, Et) represents the state of the evolving graph at time step t. It should be noted that not
only nodes and edges can evolve over time, but also node and edge attributes. However, in this paper,
we keep node and edge attributes fixed, and we allow only the node and edge sets of the graphs to
change as a function of time. The sequence can thus be written as {Gt = (At, X,E)}t∈[0,T]. We are
often interested in predicting what “comes next” in a sequence, based on data encountered in previous
time steps. In our setting, this is equivalent to predicting Gt based on the sequence {Gk}k<t. In
sequential modeling, we usually do not take into account the whole sequence, but only those instances
within a fixed small window of size w before Gt, which we denote as {Gt−w,Gt−w+1, . . . ,Gt−1}.
We refer to these instances as the graph history. The problem is then to predict the topology of Gt
given its history.

3.2 PROPOSED ARCHITECTURE

The proposed architecture is very similar to a typical sequence learning framework. The main
difference lies in the fact that instead of vectors, in our setting, the elements of the sequence
correspond to graphs. The combinatorial nature of graph-structured data increases the complexity
of the problem and calls for more sophisticated architectures than the ones employed in traditional
sequence learning tasks. Specifically, the proposed model consists of three components: (1) a graph
neural network (GNN) which generates a vector representation for each graph instance, (2) a recurrent
neural network (RNN) for sequential learning, and (3) a graph generation model for predicting the
graph topology at the next time step. This framework can also be viewed as an encoder-predictor-
decoder model. The first two components correspond to an encoder network which maps the sequence
of graphs into a sequence of vectors and another network that predicts a representation for the next in
the sequence graph. The decoder network consists of the last component of the model, and transforms
the above representation into a graph. Figure 1 illustrates the proposed model. In what follows, we
present the above three components of EvoNet.

3.2.1 ENCODING GRAPHS USING GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have recently emerged as a dominant paradigm for performing
machine learning tasks on graphs. Several GNN variants have been proposed in the past years. All
these models employ some message passing procedure to update node representations. Specifically,

3

A PREPRINT - MARCH 3, 2020

each node updates its representation by aggregating the representations of its neighbors. After k
iterations of the message passing procedure, each node obtains a feature vector which captures the
structural information within its k-hop neighborhood. Then, GNNs compute a feature vector for the
entire graph using some permutation invariant readout function such as summing the representations
of all the nodes of the graph. As described below, the learning process can be divided into three
phases: (1) aggregation, (2) update, and (3) readout.

Aggregation. In this phase, the network computes a message for each node of the graph. To
compute that message for a node, the network aggregates the representations of its neighbors.
Formally, at time t+1, a message vector mt+1

v is computed from the representations of the neighbors
N (v) of v:

mt+1
v = AGGREGATEt+1

({
htw | w ∈ N (v)

})
(1)

where AGGREGATE is a permutation invariant function. Furthermore, for the network to be end-to-
end trainable, this function needs to be differentiable. In our implementation, AGGREGATE is a
multi-layer perceptron (MLP) followed by a sum function.

Update. The new representation ht+1
v of v is then computed by combining its current feature vector

htv with the message vector mt+1
v :

ht+1
v = UPDATEt+1

(
htv,m

t+1
v

)
(2)

The UPDATE function also needs to be differentiable. To combine the two feature vectors (i. e., htv
and mt+1

v), we employ the Gated Recurrent Unit proposed in [24]:

ht+1
v = GRUt+1(htv,m

t+1
v) (3)

Omitting biases for readability, we have:

rt+1
v = σ(W t+1

R mt+1
v + U t+1

R htv)

zt+1
v = σ(W t+1

Z mt+1
v + U t+1

Z htv)

h̃t+1
v = tanh(W t+1mt+1

v + U t+1(rt+1
v � htv))

ht+1
v = (1− zt+1

v)� htv + zt+1
v � h̃t+1

v

(4)

where the W and U matrices are trainable weight matrices, σ is the sigmoid function, and rv and zv
are the parameters of the reset and update gates for a given node.

Readout. The Aggregation and Update steps are repeated for T time steps. The emerging node
representations {hTv }v∈V are aggregated into a single vector which corresponds to the representation
of the entire graph, as follows:

hG = READOUT
({
hTv | v ∈ V

})
(5)

where READOUT is a differentiable and permutation invariant function. This vector captures the
topology of the input graph. To generate hG, we utilize Set2Set [25]. Other functions such as the sum
function were also considered, but were found less effective in preliminary experiments.

3.2.2 PREDICTING GRAPH REPRESENTATIONS USING RECURRENT NEURAL NETWORKS

Given an input sequence of graphs, we use the GNN described above to generate a vector repre-
sentation for each graph in the sequence. Then, to process this sequence, we use a recurrent neural
network (RNN). RNNs use their internal state (i. e., memory) to preserve sequential information.
These networks exhibit temporal dynamic behavior, and can find correlations between sequential
events. Specifically, an RNN processes the input sequence in a series of time steps (i. e., one for each
element in the sequence). For a given time step t, the hidden state ht at that time step is updated as:

ht+1 = f(ht, xt+1) (6)

where f is a non-linear activation function. A generative RNN outputs a probability distribution
over the next element of the sequence given its current state ht. RNNs can be trained to predict
the next element (e. g., graph) in the sequence, i. e., they can learn the conditional distribution

4

A PREPRINT - MARCH 3, 2020

p(Gt|G1, . . . , Gt−1). In our implementation, we use a Long Short-Term Memory (LSTM) network
that reads sequentially the vectors {hGi

}i∈[t−w,t−1] produced by the GNN, and generates a vector
hGt

that represents the embedding of Gt. The embedding incorporates topological information and
will serve as input to the graph generation module. The GNN component presented above can be
seen as a form of an encoder network. It takes as input a sequence of graphs and projects them into a
low-dimensional space. Then, this component takes the sequence of graph representations as input
and predicts the representation of the graph at the next time step.

3.2.3 GRAPH GENERATION

To generate a graph that corresponds to the evolution of the current graph instance, we capitalize on a
recently-proposed framework for learning generative models of graphs [16]. This framework models
a graph in an autoregressive manner (i. e., a sequence of additions of new nodes and edges) to capture
the complex joint probability of all nodes and edges in the graph. Formally, given a node ordering π,
it considers a graph G as a sequence of vectors:

SπG = (Sπ1 , S
π
2 , . . . , S

π
|V |) (7)

where Sπi = [a1,i, . . . , ai−1,i] ∈ {0, 1}i−1 is the adjacency vector between node π(i) and the nodes
preceding it ({π(1), . . . , π(i− 1)}). We adapt this framework to our supervised setting.

The objective of the generative model is to maximize the likelihood of the observed graphs of the
training set. Since a graph can be expressed as a sequence of adjacency vectors (given a node ordering),
we can consider instead the distribution p(Ŝπ; θ), which can be decomposed in an autoregressive
manner into the following product:

p(Ŝπ; θ) =

|V |∏
i=1

p(Ŝπi |Ŝπk:k<i, θ)

=

|V |∏
i=1

i−1∏
j=1

p(âπji|âπli:l<j , Ŝπk:k<i, θ)

(8)

This product can be parameterized by a neural network. Specifically, following [16], we use a
hierarchical RNN consisting of two levels: (1) the graph-level RNN which maintains the state of the
graph and generates new nodes and thus learns the distribution p(Ŝπi |Ŝπk:k<i) and (2) the edge-level
RNN which generates links between each generated node and previously-generated nodes and thus
learns the distribution p(âπji|âπli:l<j). More formally, we have:

h0 = hGT

hi = RNN1(hi−1, Ŝ
π
i−1)

m0,i = hi

mj,i = RNN2(mj−1,i, â
π
j−1,i)

p(âπj,i = 1) = σ(mj,i)

âπj,i ∼ p

(9)

where hi is the state vector of the graph-level RNN (i. e., RNN1) that encodes the current state of the
graph sequence and is initialized by hGT , the predicted embedding of the graph at the next time step
T . The output of the graph-level RNN corresponds to the initial state of the edge-level RNN (i. e.,
RNN2). The resulting value is then squashed by a sigmoid function to produce the probability of
existence of an edge ˆaj,i. In other words, the model learns the probability distribution of the existence
of edges and a graph can then be sampled from this distribution, which will serve as the predicted
topology for the next time step T .

To train the model, the cross-entropy loss between existence of each edge and its probability of
existence is minimized:

L =

|V |∑
i=1

i−1∑
j=1

aπj,i
(
1− p(âπj,i = 1)

)
+ (1− aπj,i)p(âπj,i = 1) (10)

5

A PREPRINT - MARCH 3, 2020

Node ordering. It should be mentioned that node ordering π has a large impact on the efficiency
of the above generative model. Note that a good ordering can help us avoid the exploration of all
possible node permutations in the sample space. Different strategies such as the Breadth-First-Search
ordering scheme can be employed to improve scalability [16]. However, in our setting, the nodes are
distinguishable, i. e., node v of Gi and node v of Gi+1 correspond to the same entity. Hence, we can
impose an ordering onto the nodes of the first instance of our sequence of graphs, and then utilize the
same node ordering for the graphs of all subsequent time steps (we place new nodes at the end of the
ordering).

4 EXPERIMENTS AND RESULTS

In this Section, we evaluate the performance of EvoNet on synthetic and real-world datasets for
predicting the evolution of graph topology, and we compare it against several baseline methods.

4.1 DATASETS

We use both synthetic and real-world datasets. The synthetic datasets consist of sequences of graphs
where there is a specific pattern on how each graph emerges from the previous graph instance, i. e.,
add/remove some graph structure at each time step. The real-world datasets correspond to single
graphs whose nodes incorporate temporal information. We decompose these graphs into sequences
of snapshots based on their timestamps. The size of the graphs in each sequence ranges from tens of
nodes to several thousand of nodes.

Path graph. A path graph can be drawn such that all vertices and edges lie on a straight line. We
denote a path graph of n nodes as Pn. In other words, the path graph Pn is a tree with two nodes
of degree 1, and the other n − 2 nodes of degree 2. We consider two scenarios. In both cases the
first graph in the sequence is P3. In the first scenario, at each time step, we add one new node to the
previous graph instance and we also add an edge between the new node and the last according to the
previous ordering node. The second scenario follows the same pattern, however, every three steps,
instead of adding a new node, we remove the first according to the previous ordering node (along
with its edge).

Cycle graph. A cycle graph Cn is a graph on n nodes containing a single cycle through all the
nodes. Note that if we add an edge between the first and the last node of Pn, we obtain Cn. Similar
to the above case, we use C3 as the first graph in the sequence, and we again consider two scenarios.
In the first scenario, at each time step, we increase the size of the cycle, i. e., from Ci, we obtain Ci+1

by adding a new node and two edges, the first between the new node and the first according to the
previous ordering node and the second between the new node and the last according to the previous
ordering node. In the second scenario, every three steps, we remove the first according to the ordering
node (along with its edges), and we add an edge between the second and the last according to the
ordering nodes.

Ladder graph. The ladder graph Ln is a planar graph with 2n vertices and 3n− 2 edges. It is the
cartesian product of two path graphs, as follows: Ln = Pn × P2. As the name indicates, the ladder
graph Ln can be drawn as a ladder consisting of two rails and n rungs between them. We consider
the following scenario: at each time step, we attach one rung (P2) to the tail of the ladder (the two
nodes of the rung are connected to the two last according to the ordering nodes).

For all graphs, we set the attribute of each node equal to its degree, while we set the attribute of all
edges to the same value (e. g., to 1).

4.1.1 REAL-WORLD DATASETS

Besides synthetic datasets, we also evaluate EvoNet on six real-world datasets.2 They can be divided
into three groups based on the nature of their sources.

2All our datasets are publicly available through websites of [26] and [27].

6

A PREPRINT - MARCH 3, 2020

|V | |E| % Pos.Edges Timespan
Begin End

BTC-OTC 5, 881 35, 592 89% 2010-11-08 2016-01-25
BTC-Alpha 3, 783 24, 186 93% 2010-11-08 2016-01-22
UCI-Forum 899 33, 720 — 2004-05-15 2004-10-26
UCI-Message 1, 899 59, 835 — 2004-04-15 2004-10-26
EU-Core 986 332, 334 — 1970-01-01 1972-03-14
DNC 1, 891 39, 264 — 2013-09-16 2016-05-25

Table 1: Statistics of the 6 real-world datasets used in our experiments.

Bitcoin transaction networks. Contains graphs derived from the Bitcoin transaction network, a
who-trust-whom network of people who trade using Bitcoin [28, 29]. Due to the anonymity of Bitcoin
users, platforms seek to maintain a record of users’ reputation in Bitcoin trades to avoid fraudulent
transactions. The nodes of the network represent Bitcoin users, while an edge indicates that a trade
has been executed between its two endpoint users. Each edge is annotated with an integer between
−10 and 10, which indicates the rating of the one user given by the other user. The datasets are
collected separately from two platforms: Bitcoin OTC and Bitcoin Alpha. For all graphs in these two
datasets, we set the attribute of each node equal to the average rating that the user has received from
the rest of the community, and the attribute of each edge equal to the rating between its two endpoint
users.

Social networks. Contains graphs generated from an online social network at the University of
California, Irvine [30, 31]. It has two datasets: one is derived from the private message exchange
between users; the other is based on the same user community, but focuses on their activity in the
forum, i. e., public comment on a specific topic. The nodes of the networks represent users and the
edges represent a message exchange or a shared interest (on a topic). All graphs in these two datasets
are unweighted and unlabeled, thus we simply set the attribute of each node equal to its degree.

Email exchange networks. Contains two datasets derived from two sources. The first is generated
using email data from a large European research institution [32], i. e., all incoming and outgoing
email between members of the research institution. The second is collected from the 2016 Democratic
National Committee (DNC) email leak [27], where the links denote email exchanges between DNC
members. Similar to social network datasets, the graphs in these two datasets are also unweighted
and unlabelled, thus we treat them the same way.

More details about these datasets are given in Table 1.

4.2 BASELINES

We compare EvoNet against several random graph models: (1) the Erdős-Rényi model [20], (2) the
Stochastic Block model [33, 34], (3) the Barabási–Albert model [21], and (4) the Kronecker Graph
model [22]. These are the traditional methods to study the topology evolution of temporal graphs,
by proposing a driven mechanism behind the evolution. To be precise, these models begin with an
initial graph and a rule to connect new emerged nodes with existing ones, then gradually grow the
initial graph to the expected size following this rule, i. e., in Barabási–Albert model, we begin with
a triangle and follow the preferential attachment rule, in which the probability of having an edge
between a newly added node and an existing one is proportional to the current degree of the existing
node.

4.3 EVALUATION METRIC AND EVALUATION SETUP

4.3.1 SYNTHETIC DATASETS

In general, it is very challenging to measure the performance of a graph generative model since it
requires comparing two graphs to each other, a long-standing problem in mathematics and computer
science [35]. We propose to use graph kernels to compare graphs to each other, and thus to evaluate
the quality of the generated graphs. Graph kernels have emerged as one of the most effective tools for
graph comparison in recent years [36]. A graph kernel is a symmetric positive semidefinite function

7

A PREPRINT - MARCH 3, 2020

0 50 100 150 200 250 300
Graph Index

0

50

100

150

200

250

300

Gr
ap
h
Si
ze
 (n

um
be
r o

f n
od
es
)

Path graph Size: Real vs. Predict

0 100 200 300 400 500 600 700 800
Graph Index

0

500

1000

1500

2000

2500

3000

Gr
ap

h
Si

ze
 (n

um
be

r o
f n

od
es
)

Ladder graph Size: Real vs. Predict

0 20 40 60 80 100 120 140
Graph Index

20

40

60

80

100

120

140

160

Gr
ap

h
Si
ze

 (n
um

be
r o

f n
od

es
)

Cycle graph Size: Real vs. Predict

Figure 2: Results of synthetic datasets. Comparison of graph size (path, ladder and cycle graphs from
left to right): predicted size (blue) VS. real size (orange).

−0.5 0.0 0.5 1.0 1.5 2.0

PCA-Dimension 1

0.0

0.1

0.2

0.3

0.4

0.5

PC
A-
Di
m
en
sio

n
2

Projection of Dynamic Gra h Embeddings (different dynamic rocess)

 ath-remove

 ath
Co

lo
r B

ar
 fo

r d
iff
er
en
t d

yn
am

ic
gr
a
hs

−0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

PCA-Dimension 1

−0.05

0.00

0.05

0.10

0.15

0.20

PC
A-

Di
m

en
sio

n
2

P ojection of Dynamic G aph Embeddings (diffe ent st uctu es)

path

ladde

Co
lo

 B
a

 fo
 d

iff
e

en
t d

yn
am

ic
g

ap
hs

Figure 3: 2D projection of dynamic embeddings learned from datasets with different structures or
different dynamics

which takes two graphs as input, and measures their similarity. In our experiments, we employ the
Weisfeiler-Lehman subtree kernel which counts label-based subtree-patterns [19]. Note that we also
normalize the kernel values, and thus the emerging values lie between 0 and 1.

As previously mentioned, each dataset corresponds to a sequence of graphs where each sequence
represents the evolution of the topology of a single graph in 1000 time steps. We use the first 80% of
these graph instances for training and the rest of them serve as our test set. The window size w is
set equal to 10, which means that we feed 10 consecutive graph instances to the model and predict
the topology of the instance that directly follows the last of these 10 input instances. Each graph of
the test set along with its corresponding predicted graph is then passed on to the Weisfeiler-Lehman
subtree kernel which measures their similarity and thus the performance of the model.

The hyperparameters of EvoNet are chosen based on its performance on a validation set. The
parameters of the random graph models are set under the principle that the generated graphs need to
share similar properties with the ground-truth graphs. For instance, in the case of the Erdős-Rényi
model, the probability of adding an edge between two nodes is set to some value such that the density
of the generated graph is identical to that of the ground-truth graph. However, since the model should
not have access to such information (e. g., density of the ground-truth graph), we use an MLP to
predict this property based on past data (i. e., the number of nodes and edges of the previous graph
instances). This is in par with how the proposed model computes the size of the graphs to be generated
(i. e., using also an MLP).

4.4 RESULTS

We next present the experimental results and compare the performance of EvoNet against that of the
baselines.

Synthetic datasets. Figure 2 illustrates the experimental results on the synthetic datasets. Since
the graph structures contained in the synthetic datasets are fairly simple, it is easy for the model to
generate graphs very similar to the ground-truth graphs (normalized kernel values > 0.9). Hence,
instead of reporting the kernel values, we compare the size of the predicted graphs against that of the

8

A PREPRINT - MARCH 3, 2020

0.0 0.2 0.4 0.6 0.8
Similarity

0

25

50

75

100

125

150

175

200

Nu
m
be
r o

f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (BTC-OTC)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

0.0 0.2 0.4 0.6 0.8
Similarity

0

25

50

75

100

125

150

175

200

Nu
m
be
r o

f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (UCI-Message)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

Figure 4: Similarity histograms on BTC-OTC (left) and UCI-Message (right) datasets. Blue one is
the result of EvoNet, which is compared against 6 random graph models.

Model
Stat. BTC-OTC BTC-ALPHA UCI-Forum UCI-Mesg EU-Core DNC

Mean 90%ile Mean 90%ile Mean 90%ile Mean 90%ile Mean 90%ile Mean 90%ile
ER 0.28 0.40 0.22 0.32 0.15 0.16 0.16 0.26 0.06 0.09 0.82 1.00
SBM 0.21 0.30 0.18 0.27 0.10 0.10 0.13 0.22 0.03 0.05 0.84 1.00
BA 0.35 0.48 0.23 0.28 0.29 0.31 0.23 0.33 0.12 0.16 0.85 1.00
Power 0.35 0.48 0.23 0.28 0.29 0.31 0.23 0.33 0.12 0.16 0.85 1.00
Kron-Rand 0.62 0.64 0.44 0.47 0.59 0.62 0.62 0.65 0.60 0.65 0.01 0.02
Kron-Fix 0.21 0.23 0.08 0.11 0.44 0.47 0.18 0.20 0.53 0.55 0.01 0.06

EvoNet 0.82 0.84 0.55 0.59 0.64 0.68 0.71 0.75 0.76 0.81 0.83 1.00

Table 2: Statistics on the similarity distribution of different models: ER stands for Erdős–Rényi model.
SBM stands for Stochastic Block Model. BA is Barabási–Albert Model. POWER is another model,
similar to the Barabási–Albert, that grows graphs with powerlaw degree distribution. Kron-Rand
represents the Kronecker Graph Model with learnable parameter while Kron-Fix represents the
Kronecker Graph Model with fixed parameters.

ground-truth graphs. The figures visualize the increase of graph size on real sequence (orange) and
predicted sequence (blue). For path graphs, in spite of small variance, we have an accurate prediction
on the graph size. For ladder graph, we observe a mismatch at the beginning of the sequence for
small size graphs but then a coincidence of the two lines on large size graphs. This mismatch on
small graphs may be due to a more complex structure in ladder graphs such as cycles, as supported by
the results of cycle graph on the right figure, where we completely mispredict the size of cycle graphs.
In fact, we fail to reconstruct the cycle structure in the prediction, with all the predicted graphs being
path graphs. This failure could be related to the limitations of GNN mentioned in [37].

Dynamic graph embedding. It is also important to check whether, in our encode-decoder frame-
work, the learned code, which we refer to as “dynamic graph embedding”, is really meaningful.3
We design two experiments to verify the effectiveness of our embedding, with the help of synthetic
graphs. In the first experiment, we take as input two sequences of graphs belonging to the same
class but following different evolution dynamics. Specifically we took path graph and path graph
with removal. In the second experiment, we control the evolution dynamic and vary the structures of
graphs, where we use path graphs and ladder graphs following the same evolution of increasing size.
The dynamic graph embeddings of different datasets learned from these experiments are recorded
and visualized in Figure 3. Each point represents the projections of embeddings of each graph in
the sequence into a 2-dimensional space by Principle Component Analysis (PCA). As we can see
from the figure, embeddings learned from different datasets, either with different dynamics or with
different structure, are both well separated, which suggests that the embeddings are meaningful,
and those from the same dataset form special patterns such as a line in the space, which suggests a
temporal dependency between these embeddings as they are learned from sequential data.

Real-World datasets. Finally, we analyze the performance of our model on the six real datasets.
We obtain the similarities between each pair of real and predicted graphs in the sequence and draw
a histogram to illustrate the distribution of similarities. Due to page limit, we choose to only show
the histogram plot of BTC-OTC and UCI-Message datasets in Figure 4. Among all the traditional

3By “meaningful”, we mean that the code(embedding) captures both structural feature of the graph class and
temporal evolution of the series. Thus it can be applied to predict the graph at the future timestep.

9

A PREPRINT - MARCH 3, 2020

random graph models, Kronecker graph model (with learnable parameter) performs the best, however
on both datasets, our proposed method EvoNet (in blue) outperforms tremendously all other methods,
with an average similarity of 0.82 on BTC-OTC dataset and 0.71 on UCI-Message dataset. Detailed
statistics and results for other datasets can be found in Table 2, where we can find that our proposed
model performs consistently better than the traditional methods.4

Overall, despite a failure in capturing some specific structures discovered in synthetic datasets, our
experiments demonstrate the advantage of EvoNet over the traditional random graph models on
predicting the evolution of dynamic graphs, especially for real world data with complex structures.

5 CONCLUSION

In this paper, we proposed EvoNet, a model that predicts the evolution of dynamic graphs, following
an encoder-decoder framework. The proposed model consists of three components: (1) a graph
neural network which transforms graphs to vectors, (2) a recurrent architecture which reads the input
sequence of graph embeddings and predicts the embedding of the graph at the next time step, and (3)
a graph generation model which takes this embedding as input and predicts the topology of the graph.
We also proposed an evaluation methodology for this task which capitalizes on the well-established
family of graph kernels. We apply the above methodology to demonstrate the predictive power
EvoNet. Experiments show that the proposed model outperforms traditional random graph methods
on both synthetic and real-world datasets. We should note that there is still space for improvement.
Improving the efficiency of the proposed model and its scalability on large graphs are potential
directions for future work.

REFERENCES

[1] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[2] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[3] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. arXiv preprint arXiv:1812.08434,
2018.

[4] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[5] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019.

[6] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems, pages 5165–5175, 2018.

[7] Joan Bruna and X Li. Community detection with graph neural networks. stat, 1050:27, 2017.

[8] Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph
neural networks. arXiv preprint arXiv:1705.08415, 2017.

[9] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. Deepgraph: Graph structure predicts network
growth. arXiv preprint arXiv:1610.06251, 2016.

[10] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. Attributed network
embedding for learning in a dynamic environment. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pages 387–396. ACM, 2017.

4Interested readers are kindly referred to supplemental materials for a full illustration of the results on all
datasets.

10

A PREPRINT - MARCH 3, 2020

[11] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings
of the The Web Conference 2018, pages 969–976. International World Wide Web Conferences
Steering Committee, 2018.

[12] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

[13] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured
sequence modeling with graph convolutional recurrent networks. In International Conference
on Neural Information Processing, pages 362–373. Springer, 2018.

[14] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, and Charles E Leisersen. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. arXiv preprint arXiv:1902.10191, 2019.

[15] Changping Meng, S Chandra Mouli, Bruno Ribeiro, and Jennifer Neville. Subgraph pattern
neural networks for high-order graph evolution prediction. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[16] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. arXiv preprint arXiv:1802.08773,
2018.

[17] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan:
Generating graphs via random walks. arXiv preprint arXiv:1803.00816, 2018.

[18] Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of
graphs. arXiv preprint arXiv:1803.10459, 2018.

[19] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):
2539–2561, 2011.

[20] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

[21] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002.

[22] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahra-
mani. Kronecker graphs: An approach to modeling networks. Journal of Machine Learning
Research, 11(Feb):985–1042, 2010.

[23] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.
arXiv preprint arXiv:1704.06199, 2017.

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[25] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for
sets. arXiv preprint arXiv:1511.06391, 2015.

[26] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[27] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL http://networkrepository.com.

[28] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight
prediction in weighted signed networks. In 2016 IEEE 16th International Conference on Data
Mining (ICDM), pages 221–230. IEEE, 2016.

11

http://snap.stanford.edu/data
http://networkrepository.com

A PREPRINT - MARCH 3, 2020

[29] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrah-
manian. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, pages 333–341. ACM, 2018.

[30] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social Networks, 31:
155–163, 2009.

[31] Tore Opsahl. Triadic closure in two-mode networks: Redefining the global and local clustering
coefficients. Social Networks, 35(2):159 – 167, 2013. ISSN 0378-8733.

[32] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in temporal networks. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
WSDM ’17, page 601–610, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450346757. doi: 10.1145/3018661.3018731. URL https://doi.org/10.
1145/3018661.3018731.

[33] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[34] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership
stochastic blockmodels. Journal of machine learning research, 9(Sep):1981–2014, 2008.

[35] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18(03):265–298, 2004.

[36] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph Kernels: A Survey.
arXiv preprint arXiv:1904.12218, 2019.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

12

https://doi.org/10.1145/3018661.3018731
https://doi.org/10.1145/3018661.3018731

A PREPRINT - MARCH 3, 2020

A EXTRA EXPERIMENT RESULTS WITH REAL DATASETS

A.1 HISTOGRAM OF SIMILARITIES

See Figure S1.

B EXTRA EXPERIMENT RESULTS WITH SYNTHETIC DATASETS

B.1 GRAPH SIZE COMPARISON

See Figure S2.

B.2 HISTOGRAM OF SIMILARITIES

See Figure S3.

B.3 SOME EXAMPLES OF PREDICTED GRAPHS

See Figure S4, S5, S6, S7, S8, S9, respectively for Path graphs, Ladder graphs with small size, Ladder
graphs with large size, Cycle graphs, Path graphs with removal, Cycle graphs with adding extra
structures.

1

A PREPRINT - MARCH 3, 2020

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Similarity

0

50

100

150

200

250

300

350

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (BTC-ALPHA)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Similarity

0

20

40

60

80

100

120

140

160

Nu
m
be

r o
f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (UCI-Forum)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Similarity

0

10

20

30

40

50

60

Nu
m
be
r o

f i
ns
ta
nc
es

Distribution of Similarities between real and predicted graphs (Eu-Core-Emails)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

50

100

150

200

250

300

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (DNC)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(d)

Figure S1: Similarity histograms on real datasets. Blue one is the result of EvoNet, which is compared
against 6 random graph models. S1a: BTC-Alpha dataset; S1b: UCI-Forum dataset; S1c: Emails
Eu-Core dataset; S1d: DNC emails dataset.

0 200 400 600 800 1000 1200 1400 1600
Graph Index

0

100

200

300

400

500

Gr
ap

h
Si

ze
 (n

um
be

r o
f n

od
es

)

Path graph (with removal) Size: Real vs. Predict

0 200 400 600 800 1000 1200 1400 1600
Graph Index

0

500

1000

1500

2000

2500

3000

Gr
ap
h
Si
ze
 (n

um
be
r o

f n
od
es
)

Cycle graph (with extra structure) Size: Real vs. Predict

Figure S2: Comparison of graph size: predicted size (blue) VS. real size (orange). Left: Path graphs
with removal; Right: Cycle graphs with adding extra structures

2

A PREPRINT - MARCH 3, 2020

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

50

100

150

200

250

300

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Path)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Similarity

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Ladder)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(b)

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

20

40

60

80

100

120

140

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Circle)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Path-Removal)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Similarity

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f i
ns

ta
nc

es

Distribution of Similarities between real and predicted graphs (Cycle-Add)
Proposed
Erdos-Renyi
Barabasi-Albert
Powerlaw-Cluster
SBM
Kronecker-random
Kronecker-fix

(e)

Figure S3: Similarity histograms on synthetic datasets. Blue one is the result of EvoNet, which is
compared against 6 random graph models. S3a: Path graphs; S3b: Ladder graphs; S3c: Cycle graphs;
S3d: Path graphs with removal; S3e: Cycle graphs with adding extra structures.

3

A PREPRINT - MARCH 3, 2020

Real graphs Predicted graphs

Figure S4: Some examples of predictions on Path datasets: the left column is the real graphs and the
right column is the predicted ones.

4

A PREPRINT - MARCH 3, 2020

Real graphs Predicted graphs

Figure S5: Some examples of predictions on Ladder datasets (with small size graphs): the left column
is the real graphs and the right column is the predicted ones.

5

A PREPRINT - MARCH 3, 2020

Real graphs Predicted graphs

Figure S6: Some examples of predictions on Ladder datasets (with large size graphs): the left column
is the real graphs and the right column is the predicted ones.

6

A PREPRINT - MARCH 3, 2020

Real graphs Predicted graphs

Figure S7: Some examples of predictions on Cycle datasets: the left column is the real graphs and
the right column is the predicted ones.

7

A PREPRINT - MARCH 3, 2020

Real graphs Predicted graphs

Figure S8: Some examples of predictions on Path datasets with removal: the left column is the real
graphs and the right column is the predicted ones.

8

A PREPRINT - MARCH 3, 2020

Real graphs Predicted graphs

Figure S9: Some examples of predictions on Cycle datasets with adding extra structures: the left
column is the real graphs and the right column is the predicted ones.

9

	1 Introduction
	2 Related Work
	3 EvoNet: A Neural Network for Predicting Graph Evolution
	3.1 Preliminaries
	3.2 Proposed Architecture
	3.2.1 Encoding Graphs using Graph Neural Networks
	3.2.2 Predicting Graph Representations using Recurrent Neural Networks
	3.2.3 Graph Generation

	4 Experiments and Results
	4.1 Datasets
	4.1.1 Real-World Datasets

	4.2 Baselines
	4.3 Evaluation Metric and Evaluation Setup
	4.3.1 Synthetic Datasets

	4.4 Results

	5 Conclusion
	A Extra Experiment Results With Real Datasets
	A.1 Histogram of Similarities

	B Extra Experiment Results with Synthetic Datasets
	B.1 Graph Size Comparison
	B.2 Histogram of Similarities
	B.3 Some Examples of Predicted Graphs

