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Abstract. Sentiment analysis has transitioned from classifying the sen-
timent of an entire sentence to providing the contextual information of
what targets exist in a sentence, what sentiment the individual targets
have, and what the causal words responsible for that sentiment are. How-
ever, this has led to elaborate requirements being placed on the datasets
needed to train neural networks on the joint triplet task of determin-
ing an entity, its sentiment, and the causal words for that sentiment.
Requiring this kind of data for training systems is problematic, as they
suffer from stacking subjective annotations and domain over-fitting lead-
ing to poor model generalisation when applied in new contexts. These
problems are also likely to be compounded as we attempt to jointly de-
termine additional contextual elements in the future. To mitigate these
problems, we present a hybrid neural-symbolic method utilising a Depen-
dency Tree-LSTM’s compositional sentiment parse structure and com-
plementary symbolic rules to correctly extract target-sentiment-cause
triplets from sentences without the need for triplet training data. We
show that this method has the potential to perform in line with state-of-
the-art approaches while also simplifying the data required and providing
a degree of interpretability through the Tree-LSTM.

Keywords: Sentiment analysis · Tree-LSTM · Hybrid neural-symbolic

1 Introduction

Sentiment Analysis (SA) has been described as a suitcase [1], where SA is com-
posed of several smaller Natural Language Processing (NLP) tasks that need
to be performed to acquire a contextual understanding of a predicted sentiment
label. One of the most prevalent steps beyond sentence-level sentiment classi-
fication is Aspect-Based Sentiment Analysis (ABSA) [8]. In ABSA, targets in
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sentences for a particular domain are determined and assigned specific sentiment
labels that may differ from other targets in the same sentence. Jointly being able
to determine a target and its sentiment is a necessary step towards being able
to use that information in practical scenarios.

Extracting terms used to identify the cause or reason for a sentiment outcome
in a sentence is sometimes called Opinion Term Extraction (OTE) [6]. The goal
of OTE is to identify these causal words in a sentence and compare them to
user annotations of what they consider to be the cause of a sentiment. OTE
provides an idea of what words convey affective meaning. In recent works, ABSA
and OTE have been combined [6] to create triplets of information describing a
target, its sentiment, and the cause of that sentiment. This task, known as Aspect
Sentiment Triplet Extraction (ASTE) [6], has the potential to provide a lot of
contextual information to intelligent agents allowing them to not only know what
is being spoken about but how an individual feels about it and what the cause
of that feeling may be. With this information, the agent can either reinforce a
certain behaviour based on the cause, if positive, or attempt to remedy a negative
cause if possible. An example of such a triplet for the sentence “the food was
excellent” would be (“the food”, positive, “excellent”) where “the food” is the
target, the sentiment is positive, and “excellent” is the opinion term.

While predicting sentiment triplets is valuable, the method in which we ac-
quire them for agents needs to be robust. Agents often find themselves in dy-
namic contexts provided by natural language when interacting with individuals
in virtual and real-world environments. These context shifts are very problem-
atic when doing triplet sentiment analysis, as the new targets or aspects that
occur may not have been captured by the training data. Likewise, the process
of having three subjective labels that have to be jointly predicted is difficult to
learn and difficult to expand upon, as any new datasets would require annotators
to make three subjective decisions regarding what substring constitutes a target,
what the sentiment of that target is, and what the cause for that sentiment is.

These tasks have the possible flaw of introducing annotator bias and the
alignment of triplet information introduces further bias. As an example, the
original opinion terms were aligned with aspects by only two annotators [3] and
we do not know how many annotators the opinion terms had. Across all of the
papers used by the triplet dataset [6] this has resulted in 5 different degrees of
subjective error for the individual tasks and alignments combined during training
and evaluation. While these errors could be mitigated by naively relabelling the
data set with triplets from scratch, it would not solve shortcomings in scenarios
in which we would want additional context as quadruplet or more or would like
to change into a new domain. Methods that require specific jointly annotated
data do not scale well between domains. Therefore we propose leveraging a
combination of symbolic information and neural processing to circumvent this.

As an alternative, we propose a hybrid neural-symbolic method for Tree
Long-Short Term Memory (Tree-LSTM) Aspect Sentiment Triplet Extraction
(TASTE) through the symbolic analysis of the compositional processing of a
Dependency Tree-LSTM (DTLSTM) [11]. This approach has the benefit of not
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requiring domain-specific triplet training data but only requires sentiment an-
notations from the Stanford Sentiment Treebank (SST) [9]. This method scales
between domains as it only relies on the compositional processing done by the
DTLSTM and noun chunk identification as opposed to learning high-level re-
lations at domain-level between labels. Furthermore, due to the structured re-
cursive processing of the DTLSTM, we are granted a degree of interpretability
through predictions over the dependency parse tree, allowing for common-sense
reasoning as to why a certain target, sentiment, and causes were selected. We
show that this method allows us to perform in line with state-of-the-art neural
approaches under the correct circumstances while allowing for the aforemen-
tioned interpretability and simple output and behaviour modifications through
symbolic rules.

2 Related Work

Sutherland et al. [10] provide a method of identifying targets and their sentiment
based on the sentiment parse of a Tree-LSTM over a dependency parse tree. This
is done by applying a set of symbolic rules to the neurally determined output
of the Tree-LSTM for every node in the syntactic dependency parse tree, where
each prediction is based on hidden states of the children of a node. This method
relies upon the structure of dependency parses having verbs as the heads of
affective substrings that contain targets, wherein the targets are children of the
verb. In this paper, we extend the work of Sutherland et al. to identify more
targets and include cause, also known as Opinion Term Extraction (OTE).

Using dependency trees is beneficial for ABSA and often involves symbolic
operations on the dependencies. Wang et al. [12] present Recursive Neural Con-
dition Random Fields (RNCRF) which utilise a recursive network to produce
high-level representations based on the syntactic structure. They are then used
to train conditional random fields to extract aspect-opinion pairs. Dai et al. [2]
also trained a Bi-directional LSTM-Conditional Random Field (BiLSTM-CRF)
which utilises additional unlabelled data together with the SemEval data [8] to
determine aspect-opinion pairs.

Peng et al. [6] go so far as to actively construct the triplet dataset and use a
two-stage model of first predicting the target and opinion together, and then use
a Bidirectional LSTM to predict if the two are a valid pair in the second stage.
This allows the system to utilise information from the opinion extraction when
predicting targets to get a higher performance overall. In our work, we utilise the
data provided by Peng et al. and symbolic rule-based principles from Sutherland
et al. [10] to show that the task of ASTE can be performed comparatively under
the right conditions with only access to standard sentiment data.

3 SemEval ASTE Dataset

We utilise the SemEval ASTE dataset [6] which is an extension of the SemEval
ABSA dataset [8]. The SemEval ABSA task, proposed at the 2014 International
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Workshop on Semantic Evaluation (SemEval), is based on identifying targets of
sentiment in sentences. The SemEval ABSA dataset was extended by Pontiki et
al. [8] to include additional elements such as being able to identify the particular
category a target may belong to or being able to perform ABSA in different
languages. This dataset was used as the foundation to further deepen the analysis
of sentiment by introducing “opinion terms” [12], what can be considered to
be the reason or cause for a particular sentiment. The alignments between the
aspects and the opinion terms are provided by Fan et al. [3].

This all culminated in the work of Peng et al. [6], wherein they introduce
the SemEval ASTE dataset3, consisting of identifying targets, classifying the
sentiment towards those targets, and determining which words in a sentence
were responsible for the sentiment towards a target, the “opinion”. We use this
extended dataset, which has been provided by the authors to analyse how well
our approach can extract sentiment triplets and to compare against other ap-
proaches. Each data-point consists of a sentence and each sentence can have
multiple targets which are substrings in the sentence. Each target has a specific
sentiment, with the labels positive, neutral, and negative, and an opinion term
which consists of a substring in the sentence defined by annotators.

The dataset itself is split up into two domains restaurants and laptops: there
are three versions of the restaurant dataset, denoted rest14, rest15, and rest16
based on the year the data was used in the SemEval challenge, and lap14 for the
2014 laptop ABSA data. The total number of viable targets for each version can
be seen in Table 1.

4 Dependency Tree-LSTM

Our method is based on the compositional processing used by the Dependency
Tree-LSTM (DTLSTM) [11], that was utilised for ABSA by Sutherland et al.
[10], whose method functions as a basis for our approach. To extract our senti-
ment triplet we need to know the distribution of sentiment over a dependency
tree. To do this, we pre-train a DTLSTM on the Stanford Sentiment Treebank
(SST) [9] training data. What differentiates a DTLSTM and an LSTM is that it
can take several inputs at each time-step and processes input based on the de-
pendency tree parse structure of its input sentence. A DTLSTM has the weight
matrices W and U , and a bias vector b similar to the LTSM it is based upon
with the same sigmoidal activation function σg.

For a DTLSTM, a node j in a dependency tree possesses a set of dependent
child nodes, denoted C(j), which contains the indexes of children k, with each
child possessing a hidden state hk. An input word vector xj is the vector corre-
sponding to the word associated with j in the parse tree. The summed hidden
states h̃j of the child nodes are the input to the input gate ij . The DTLSTM has
several forget vectors fjk for each child k of node j. The DTLSTM has an output
gate activation vector oj , such as those possessed by an LSTM, and a memory

3 https://github.com/xuuuluuu/SemEval-Triplet-data
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cell vector uj . The updated memory cell state vector cj is the summed element-
wise multiplication of ij and uj with the summed element-wise multiplications
of each child cell state ck with fjk. The hidden state hj is the element-wise mul-
tiplication of oj and tanh(cj). The equations for the DTLSTM, are defined by
Tai et al. [11] and are as follows:

h̃j =
∑

k∈C(j)

hk, (1)

ij = σg(W (i)xj + U (i)h̃j + b(i)), (2)

fjk = σg(W (f)xj + U (f)hk + b(f)), (3)

oj = σg(W (o)xj + U (o)h̃j + b(o)), (4)

uj = σg(W (u)xj + U (u)h̃j + b(u)), (5)

cj = ij � uj +
∑

k∈C(j)

fjk � ck, (6)

hj = oj � tanh(cj). (7)

Words in a sentence are represented as Word Embeddings from the pre-
trained Common-Crawl 840B data4 before they are fed to the DTLSTM. To
analyse sentiment for sentences according to a tree structure, we use the state
of the art NLP library SpaCy [5] to extract dependency trees. We see when
predicting over dependency trees that the sentiment that propagates through
the tree can come from many different sources, such as nouns, adjectives, and
sometimes the verb heads themselves [9]. The compositional structure also allows
for the extraction of sub-trees as opposed to other approaches that only provide
individual words.

5 Aspect Sentiment Triplet Extraction

To analyse how close the features utilised by our neural models are to the an-
notations provided by a user we have to determine what are viewed as salient
features. We do this by observing two TASTE approaches that can allocate
salience to words in a sentence when considering the sentiment.

5.1 Target identification

Our method of identifying affective targets extends the method of Sutherland
et al. [10] by changing the conditions under which targets are extracted. In the
work of Sutherland et al., targets are extracted when there exists a noun chunk,
as identified by SpaCy, that has a verb as its head in the dependency tree. This
provided both a target and the sub-tree it belongs to as defined by the children
of the head verb.

4 https://nlp.stanford.edu/projects/glove/
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Fig. 1. An example of what kind of sentiment opinion terms are identified from a
sentiment dependency parse for the positive sentiment (+) in an example sentence with
the target “food” and the sentiment “positive” for our two methods: Highest Node
(HN) and Sentiment Search (SS). The selected reason candidates for the respective
methods, as represented by the dashed boxes, can be compared against the ground
truth reasoning (GT) as provided by annotators. In this sentence, we see that HN
identifies the word “good” as the reason, whereas SS identifies the substring “is pretty
good”, and annotators identified “pretty good” as the correct reason. The values in
the HN row are the logarithmic softmax values for the positive sentiment class of the
projection layer of the Tree-LSTM.

We adjust this method by addressing cases where there is no verb or the verb
is defined as an auxiliary verb, and therefore possesses the “AUX” dependency
tag. The same basic algorithm is followed: for every verb or auxiliary verb in a
sentence, if a noun chunk exists as a substring within the substring created from
that parent’s children and itself then that noun chunk is a viable target. Every
target can only be associated with its closest parental verb but a parental verb
may possess multiple noun chunks. In addition to this, we allow dependency
trees that have noun chunks but no verbs to also be considered as targets. An
example sentence where this would be relevant would be the sentence “Good
food.”, where “food” would become the target.

5.2 Target sentiment classification

Sutherland et al. [10] leveraged a method classifying the sentiment of a target
by having the target inherit the sentiment of its parental verb in a trickle-down
fashion. This is possible thanks to the DTLSM’s compositional parsing and the
fact that sentiment is propagated up through the dependency tree to the root of
the sentence. We utilise the same method of sentiment prediction, by using the
DTLSTM to predict a sentiment vector over the negative, neutral, and positive
classes for every node in the dependency parse tree.

The DTLSTM is pre-trained on the SST [9] and retains the hyper-parameter
set as reported by Tai et al. [11]. We use these hyper-parameters as the default
in the implementation we adjusted for our approach5, as we found adjustments

5 https://github.com/ttpro1995/TreeLSTMSentiment
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to be insignificant and further optimisation of the architecture is outside of the
scope of this paper. Similar to Sutherland et al. [10] and Peng et al. [6], we select
the pre-trained model that performed the best on the SST validation data over
ten epochs. With this, we can acquire a prediction for every sentiment class for
every node in the dependency tree.

Once this is done we iterate over every target and each target inherits the
sentiment of its parental verb, essentially trickling down the sentiment from the
verb to the noun chunks. As an example, sentence “the food is good” would have
a positive sentiment propagated from the word good up to the root “is”. As the
target “the food” has “is” as its parental verb, it will also inherit the positive
sentiment that has been propagated up to “is”. In the case of sentences or sub-
sentences where there are no verbs, the noun of the noun chunk acts as the root
of the sentence and is the receiver of the sentiment charge.

5.3 Target opinion term extraction

We examine two different TASTE approaches for extracting cause from a senti-
ment dependency parse. The first approach, Highest Node (HN), is to recursively
search the predictions of the sub-tree of a target from the parental node of the
target and extract the node in its sub-tree with the highest logarithmic softmax
activation level for the intended sentiment. This provides us with a single word
from the dependency parse tree that is believed to be the most likely reason
for the outcome sentiment. The benefit of this approach is that it is likely to
reliably identify at least one word in the reason, as additional non-salient words
are likely to reduce the activation level as opposed to increase it. Drawbacks are
that reasons that require multiple words to understand, e.g. “very good” cannot
be fully extracted. Another issue is that if a parental node is somewhat trending
toward the sentiment, but not the primary cause, it may be picked instead.

The second approach, Sentiment Search (SS), allows for the extraction of
this additional causation context, as we recursively search through the sub-tree
of the parent node of a target and extract all nodes where the target sentiment
is higher than the other classes. This allows for the selection of multiple reason
words and the construction of multi-word substrings. So for the sentence “The
sushi was pretty good” “was”, “pretty” and “good” would be extracted as reasons
for the positive sentiment towards sushi.

The drawbacks of this method are that it can suffer from low precision, as
it will pick up words that inherit positive sentiment as they propagate up the
dependency tree, and that it cannot identify a reason if positive sentiment is not
being properly propagated up the tree, i.e. nodes that incorrectly have a higher
sentiment for neutral rather than positive. Examples of what both methods
identify and the kind of features they look at can be seen in Figure 1. The
method used for recursively going through the affective dependency parse tree
and picking out either HN or SS is defined in Algorithm 1, which recursively
searches through the tree of nodes from the root in a depth first fashion to
identify the SS and HN nodes.
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Algorithm 1 RecursiveSearch

1: if nodeiSentiment equals targetSentiment then
2: SSHypothesis.insert(nodeWord)
3: end if
4: if len(children(nodei)) is 0 then
5: return nodeiSentActivation
6: else
7: highestActivation← nodeiSentActivation
8: HNHypothesis← nodeWord
9: for c in children(nodei) do

10: temp← RecursiveSearch(nodei)
11: if temp ≥ highestActivation then
12: highestActivation← temp
13: HNHypothesis← childWord(c)
14: end if
15: end for
16: return highestActivation
17: end if

6 Evaluation

Google’s Bilingual Evaluation Understudy (Google-BLEU or GLEU) [13] is used
to measure distance between our extracted targets and what are designated as
such in the dataset in addition to precision and recall. We choose to include
GLEU as one of our measurements at extraction level, as we wish to take a
more inclusive stance on what is considered to be correctly extracting a target
or opinion term. For example, the sentence “I loved the red cake” may have a
given target “cake”, however, the “red cake” or even “the red cake” are also
equally valid targets for the positive sentiment in that sentence.

As such we consider a target or opinion term extracted if they are equal to
or exist as a substring of the annotation or vice-versa. Therefore, we provide the
GLEU to give an estimate on how far our extraction strays from the original
label, as we believe collecting additional contextual information for a target is
beneficial and that this metric also addresses that the annotations are subjective
and not always objectively correct. When calculating GLEU for targets and SS
we remove determiners and copula, as annotators did not deem these as part
of the labels and removing them does not change the semantic meaning. For
determiners we remove “the”, “a”, and “an”. For copula we remove “is”, “was”,
“were”, and “are”.

GLEU, as defined by Wu et al. [13] and as implemented in the NLTK python
package [7], is calculated for a generated and reference sentence by calculating
recall and precision for all sub-sequences of 1 to 4 tokens between the two sen-
tences, where recall is the ratio of correct sub-sequences in the reference sentence
and precision is the ratio of matching sub-sequences in the generated sentence.
The GLEU score itself is the minimum of recall and precision, selecting the low-
est value, with the lowest value being 0, indicating no matching sub-sequences
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and the highest possible value being 1, indicating a full match between all pos-
sible sub-sequences for both precision and recall. In this section, we present the
cascading results of target identification, sentiment classification for that target,
and the extraction of the opinion term for that target given its sentiment.

6.1 Target identification results

In Table 1 we present the results of target identification from sentences using
the symbolic method specified in Section 5.1. We see that the laptop dataset is
more difficult to extract targets from when compared to the restaurant datasets.

Table 1. Targets, precision, and recall for the identified targets over all of the datasets
as provided by our symbolic extraction method. In addition to this, the average GLEU
is provided to indicate how well the identified target tokens match the labelled ground
truth tokens. A reference for the strength of the GLEU can be found in Table 4, where
we show GLEU for labels against the entire sentence and single words.

Targets P R Avg. GLEU

14res 849 0.549 0.921 0.722

14lap 475 0.426 0.785 0.713

15res 426 0.461 0.920 0.731

16res 444 0.476 0.921 0.714

6.2 Targeted sentiment classification results

Here we present the results of the targeted sentiment analysis after target iden-
tification, which can be seen in Table 2. In general, we see that sentiment per-
formance between restaurants and laptops is fairly uniform, indicating that the
sentiment propagation and reliance on parental verbs for classification does not
differ with as large a margin as for the tasks of target identification and OTE.

Table 2. Overall sentiment accuracy for target sentiments over all of the datasets
based on the targets that were identified.

Accuracy

14res 0.740

14lap 0.719

15res 0.722

16res 0.778

6.3 Targeted opinion term extraction results

In this section, we show the results of OTE and triplet extraction. In Table 3
we see the results of applying HN, SS and merging the set of extracted terms
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for HN & SS for OTE. We also compare these results against GLEU for the
entire sentence (FULL) to show that the extracted data is more semantically
relevant. We see that SS can extract more opinion terms than HN, however, we
also see in Table 4 that HN tends to give predictions closer to what is labelled by
annotators. Interestingly, we see in Table 3 that there is a misalignment between
extracted opinions and sentiment, otherwise, both rows would be mirrored by
their “-3” counterparts. This implies that the system is extracting the correct
target despite using the incorrect sentiment when recursively searching.

Table 3. F1-scores of the HN and SS methods for extracting opinion terms for the
targets found in Table 1. Rows denoted with “-3” refer to when the sentiment and
opinion term are correctly identified for a correctly extracted target in the previous
step, thus successfully identifying a full triplet. As a triplet is generated for every found
target, the F1-score is equivalent to the precision and recall under these conditions.

14res 14lap 15res 16res

HN 0.482 0.398 0.515 0.503

SS 0.625 0.488 0.633 0.615

HN-3 0.420 0.315 0.450 0.447

SS-3 0.547 0.386 0.547 0.543

Table 4. GLEU scores at opinion level for our two different opinion targeting identi-
fication methods with the copula “is”, “was”, “s”, “were”, and “are” removed for the
SS method. We include the full sentence score against the label to provide a contrast
to the selection methods.

14res 14lap 15res 16res

Avg. GLEU σ Avg. GLEU σ Avg. GLEU σ Avg. GLEU σ

Full Sent 0.036 0.049 0.041 0.050 0.056 0.079 0.056 0.075

HN 0.797 0.342 0.736 0.376 0.786 0.344 0.778 0.349

SS 0.377 0.381 0.377 0.377 0.411 0.362 0.398 0.377

In Table 5, we see that recall values for SS and when HN & SS are in line with
state of the art approaches, even beating them for 15rest, in-spite of our method
only using one pre-trained model and not being trained on triplet data. However,
our model is penalised for generating more targets than what are considered
aspects of that domain by annotators. If our approach was not being penalised
for the out-of-domain targets, then our recall would become our F1-score.

7 Discussion & Conclusion

We show in Table 5 that we can perform ASTE without the need for triplet data
if we can be flexible with acquiring targets and opinion terms. This is at the cost
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Table 5. Precision and recall scores for the correctly predicted triplets from each ver-
sion of the restaurant and laptop dataset for our method against different benchmarks.
TD stands for triplet data and denotes how much triplet training data is required to
achieve the specified results. Methods with a “+” are the cascading results of models
presented in the paper by Peng et al. [6]. TASTE* SS shows results of our SS method
for cases with correct targets before triplet alignment based on Table 3.

14res 14lap 15res 16res

TD P R TD P R TD P R TD P R

RINANTE+ 2669 0.376 0.340 1602 0.231 0.176 1161 0.294 0.269 1605 0.271 0.205
CMLA+ 2669 0.401 0.466 1602 0.314 0.346 1161 0.344 0.376 1605 0.436 0.398
Peng et al. [6] 2669 0.442 0.629 1602 0.404 0.472 1161 0.410 0.547 1605 0.468 0.630

TASTE HN 0 0.225 0.379 0 0.128 0.248 0 0.203 0.416 0 0.208 0.417
TASTE SS 0 0.293 0.493 0 0.157 0.304 0 0.246 0.505 0 0.253 0.507
TASTE HN & SS 0 0.323 0.543 0 0.182 0.353 0 0.269 0.552 0 0.273 0.549

TASTE* SS 0 0.547 0.547 0 0.386 0.386 0 0.547 0.547 0 0.543 0.543

of precision, as if we require an exact GLEU match with the annotations then
the average accuracies shown in Table 3 will decrease, with HN dropping from
0.474 to 0.333 and SS more sharply declining from 0.590 to 0.151 as we approach
a GLEU value of 1. The decline of SS being due to SS over-selecting tokens while
HN will under-select tokens. However, in practice, the content will be largely the
same, as the intended label still exists as a substring in the extracted opinion.

By interpreting DTLSTM output, our research aligns with recent work in
interpretable AI for making decisions in AI systems understandable to humans
[4]. Current algorithms can determine some sentiment but methods for detecting
what the cause of a sentiment is or who is targeted by the sentiment are not thor-
oughly investigated. The application areas of interpretable AI are vast including
being able to explain the reasons for recruitment decisions, credit check deci-
sions or to mitigate bias but also for intelligent agents or robots to successfully
function alongside humans. For instance, robots that only detect an unhappy
human cannot act without knowing the cause of this unhappiness.

We present a method of extracting target-sentiment-cause triplets, TASTE,
without the need for domain-specific or triplet training data. We show that this
method can retrieve as many correct triplets as state-of-the-art methods that
require prohibitive triplet data. We believe that this method is useful for intelli-
gent agents, such as robots, that would have to be able to interpret contextual
sentiment information on the fly in a dynamic context and domain.

Our approach can determine triplets regardless of how the context shifts, as
targets are syntax-based and sentiment is learned compositionally, systems then
having a selection of valid triplets that can be interpreted in a scenario. Further-
more, our system does not require the constant acquisition of new domains that
require further triplet annotation collection, as our method learns hierarchical
sentiment composition from the SST through the DTLSTM. In summary, our
method allows for more domain independent ASTE that works in more dynamic
contexts at the cost of precision.
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