Skip to main content

Attention Based Mechanism for Load Time Series Forecasting: AN-LSTM

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

Abstract

Smart grids collect high volumes of data that contain valuable information about energy consumption patterns. The data can be utilized for future strategies planning, including generation capacity and economic planning by forecasting the energy demand. In the recent years, deep learning has gained significant importance for energy load time-series forecasting applications. In this context, the current research work proposes an attention-based deep learning model to forecast energy demand. The proposed approach works by initially implementing an attention mechanism to extract relevant deriving segments of the input load series at each timestamp and assigns weights to them. Subsequently, the extracted segments are then fed to the long-short term memory network prediction model. In this way, the proposed model provides support for handling big-data temporal sequences by extracting complex hidden features of the data. The experimental evaluation of the proposed approach is conducted on the three seasonally segmented dataset of UT Chandigarh, India. Two popular performance measures (RMSE and MAPE) are used to compare the prediction results of the proposed approach with state-of-the-art prediction models (SVR and LSTM). The comparison results shows that the proposed approach outperforms other benchmark prediction models and has the lowest MAPE (7.11%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Energy central. https://energycentral.com/c/ec/how-ai-and-automation-are-impacting-future-energy. Accessed 30 Feb 2020

  2. International energy agency: digitalisation-and-energy. https://www.iea.org/reports/digitalisation-and-energy. Accessed 30 Feb 2020

  3. Power ministry. https://powermin.nic.in/. Accessed 30 Feb 2020

  4. Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/. Accessed 30 Jan 2020

  5. Bandara, K., Bergmeir, C., Hewamalage, H.: LSTM-MSNet: leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE Trans. Neural Netw. Learn. Syst. (2020)

    Google Scholar 

  6. Bandara, K., Bergmeir, C., Smyl, S.: Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach. Expert Syst. Appl. 140, 112896 (2020)

    Article  Google Scholar 

  7. Bedi, J., Toshniwal, D.: Deep learning framework to forecast electricity demand. Appl. Energy 238, 1312–1326 (2019)

    Article  Google Scholar 

  8. Chandramowli, S., Lahr, M.L.: Forecasting new jersey’s electricity demand using auto-regressive models. Available at SSRN 2258552 (2012)

    Google Scholar 

  9. Dedinec, A., Filiposka, S., Dedinec, A., Kocarev, L.: Deep belief network based electricity load forecasting: an analysis of Macedonian case. Energy 115, 1688–1700 (2016)

    Article  Google Scholar 

  10. Dey, A.N., Panigrahi, B.K., Kar, S.K.: Smartgrids/microgrids in India: a review on relevance, initiatives, policies, projects and challenges. In: Sharma, R., Mishra, M., Nayak, J., Naik, B., Pelusi, D. (eds.) Innovation in Electrical Power Engineering, Communication, and Computing Technology. LNEE, vol. 630, pp. 465–474. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2305-2_37

    Chapter  Google Scholar 

  11. Ekonomou, L.: Greek long-term energy consumption prediction using artificial neural networks. Energy 35(2), 512–517 (2010)

    Article  Google Scholar 

  12. Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., Martínez-Álvarez, F.: Multi-step forecasting for big data time series based on ensemble learning. Knowl. Based Syst. 163, 830–841 (2019)

    Article  Google Scholar 

  13. González, V., Contreras, J., Bunn, D.W.: Forecasting power prices using a hybrid fundamental-econometric model. IEEE Trans. Pow. Syst. 27(1), 363–372 (2011)

    Article  Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  15. He, W.: Load forecasting via deep neural networks. Procedia Comput. Sci. 122, 308–314 (2017)

    Article  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Hu, D.: An introductory survey on attention mechanisms in NLP problems. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1038, pp. 432–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29513-4_31

    Chapter  Google Scholar 

  18. Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37(1), 479–489 (2010)

    Article  Google Scholar 

  19. Kwon, B.S., Park, R.J., Song, K.B.: Short-term load forecasting based on deep neural networks using LSTM layer. J. Electr. Eng. Technol. (2020)

    Google Scholar 

  20. Lara-Benítez, P., Carranza-García, M., Luna-Romera, J.M., Riquelme, J.C.: Temporal convolutional networks applied to energy-related time series forecasting. Appl. Sci. 10(7), 2322 (2020)

    Article  Google Scholar 

  21. Liu, D., Chen, Q., Mori, K.: Time series forecasting method of building energy consumption using support vector regression. In: 2015 IEEE International Conference on Information and Automation, pp. 1628–1632. IEEE (2015)

    Google Scholar 

  22. Mining, H.J.K.M.D.: Concepts and techniques. Jiawei Han and Micheline Kamber 2 (2001)

    Google Scholar 

  23. Ouyang, T., He, Y., Li, H., Sun, Z., Baek, S.: Modeling and forecasting short-term power load with copula model and deep belief network. IEEE Trans. Emerg. Top. Comput. Intell. 3(2), 127–136 (2019)

    Article  Google Scholar 

  24. Prasad, R., Joseph, L., Deo, R.C.: Modeling and forecasting renewable energy resources for sustainable power generation: basic concepts and predictive model results. In: Singh, A. (ed.) Translating the Paris Agreement into Action in the Pacific. AGCR, vol. 68, pp. 59–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30211-5_3

    Chapter  Google Scholar 

  25. Tso, G.K., Yau, K.K.: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32(9), 1761–1768 (2007)

    Article  Google Scholar 

  26. Van Tran, N., Van Tran, Q., Do, L.T.T., Dinh, L.H., Do, H.T.T.: Trade off between environment, energy consumption and human development: do levels of economic development matter? Energy 173, 483–493 (2019)

    Article  Google Scholar 

  27. Wang, H., Lei, Z., Zhang, X., Zhou, B., Peng, J.: A review of deep learning for renewable energy forecasting. Energy Convers. Manage. 198, 111799 (2019)

    Article  Google Scholar 

  28. Yunpeng, L., Di, H., Junpeng, B., Yong, Q.: Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network. In: 2017 14th Web Information Systems and Applications Conference (WISA), pp. 305–310. IEEE (2017)

    Google Scholar 

  29. Zhang, X., He, K., Bao, Y.: Error-feedback stochastic configuration strategy on convolutional neural networks for time series forecasting. arXiv preprint arXiv:2002.00717 (2020)

  30. Zhou, X., Wan, X., Xiao, J.: Attention-based LSTM network for cross-lingual sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 247–256 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatin Bedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bedi, J. (2020). Attention Based Mechanism for Load Time Series Forecasting: AN-LSTM. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics