Skip to main content

Neural Machine Translation Based on Improved Actor-Critic Method

  • Conference paper
  • First Online:
  • 2146 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Abstract

Reinforcement learning based neural machine translation (NMT) is limited by the sparse reward problem which further affects the quality of the model, and the actor-critic method is mainly used to enrich the reward of the output fragments. But for low-resource agglutinative languages, it does not show significant results. To this end, we propose an novel actor-critic approach that provides additional affix-level rewards and also combines the traditional token-level rewards to guide the parameters update of the NMT model. In addition, for purpose of improving the decoding speed, we utilize an improved non-autoregressive model as the actor model to make it pay more attention to the translation quality while outputting in parallel. We achieve remarkable progress on two translation tasks, including the low-resource Mongolian-Chinese and the public NIST English-Chinese, while significantly shorting training time and accomplishing faster convergence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.ldc.upenn.edu/.

  2. 2.

    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl.

References

  1. Bahdanau, D., et al.: An actor-critic algorithm for sequence prediction. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017). https://openreview.net/forum?id=SJDaqqveg

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.0473

  3. Choshen, L., Fox, L., Aizenbud, Z., Abend, O.: On the weaknesses of reinforcement learning for neural machine translation. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=H1eCw3EKvH

  4. Gu, J., Bradbury, J., Xiong, C., Li, V.O.K., Socher, R.: Non-autoregressive neural machine translation. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference Track Proceedings (2018)

    Google Scholar 

  5. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. CoRR (2015). http://arxiv.org/abs/1503.02531

  6. Lee, J., Mansimov, E., Cho, K.: Deterministic non-autoregressive neural sequence modeling by iterative refinement. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October 31–4 November 2018, pp. 1173–1182 (2018)

    Google Scholar 

  7. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002, pp. 311–318. ACL (2002). https://doi.org/10.3115/1073083.1073135. https://www.aclweb.org/anthology/P02-1040/

  8. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 3856–3866 (2017)

    Google Scholar 

  9. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, Berlin, Germany, 7–12 August 2016, Volume 1: Long Papers. The Association for Computer Linguistics (2016). https://doi.org/10.18653/v1/p16-1162

  10. Shao, C., Feng, Y., Zhang, J., Meng, F., Chen, X., Zhou, J.: Retrieving sequential information for non-autoregressive neural machine translation. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July–2 August 2019, pp. 3013–3024 (2019). https://www.aclweb.org/anthology/P19-1288/

  11. Sun, Z., Li, Z., Wang, H., He, D., Lin, Z., Deng, Z.: Fast structured decoding for sequence models. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019, pp. 3011–3020 (2019). http://papers.nips.cc/paper/8566-fast-structured-decoding-for-sequence-models

  12. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 3104–3112 (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

  13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 5998–6008 (2017)

    Google Scholar 

  14. Wang, Y., Tian, F., He, D., Qin, T., Zhai, C., Liu, T.: Non-autoregressive machine translation with auxiliary regularization. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 5377–5384 (2019)

    Google Scholar 

  15. Wu, L., Tian, F., Qin, T., Lai, J., Liu, T.: A study of reinforcement learning for neural machine translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018, pp. 3612–3621 (2018). https://www.aclweb.org/anthology/D18-1397/

  16. Zhou, L., Zhang, J., Zong, C.: Synchronous bidirectional neural machine translation. TACL 91–105 (2019). https://transacl.org/ojs/index.php/tacl/article/view/1513

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxu Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Hou, H., Wu, N., Sun, S. (2020). Neural Machine Translation Based on Improved Actor-Critic Method. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics