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Abstract. With more and more event-based neuromorphic hardware
systems being developed at universities and in industry, there is a grow-
ing need for assessing their performance with domain specific measures.
In this work, we use the methodology of converting pre-trained non-
spiking to spiking neural networks to evaluate the performance loss and
measure the energy-per-inference for three neuromorphic hardware sys-
tems (BrainScaleS, Spikey, SpiNNaker) and common simulation frame-
works for CPU (NEST) and CPU/GPU (GeNN). For analog hardware
we further apply a re-training technique known as hardware-in-the-loop
training to cope with device mismatch. This analysis is performed for five
different networks, including three networks that have been found by an
automated optimization with a neural architecture search framework.
We demonstrate that the conversion loss is usually below one percent for
digital implementations, and moderately higher for analog systems with
the benefit of much lower energy-per-inference costs.

Keywords: Spiking Neural Networks · Neural Architecture Search ·
Benchmark.

1 Introduction

Diverse event-based neuromorphic hardware systems promise the accelerated ex-
ecution of so called spiking neural networks (SNN), also referred to as the third
generation of neural networks [14]. The most prominent representatives of this
class of hardware accelerators include the platforms Braindrop [16], BrainScaleS
[22], DYNAPs [15], Loihi [5], SpiNNaker [8] and Truenorth [1]. With the di-
versity of hardware accelerators comes a problem for potential end-users: which
platform is suited best for a given spiking neural network algorithm, possibly re-
specting inherent resource requirements for embedding in mobile robots or smart
devices. Usually, this question is answered by evaluating a set of benchmarks on
all qualified systems, which measure the state-of-the-art and quantify progress
in future hardware generations (see e.g. [4])). Here, we face two major challenges
with neuromorphic hardware. First, there is no universal interface to all hard-
ware/software simulators despite some projects like PyNN [6]. Second, there are
quite a few promising network models and learning strategies, but still “the”
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algorithm for spiking neural networks is missing. One recent system overarching
network is the cortical microcircuit model [2,13]. A follow-up publication [21]
shows, how this benchmark has driven platform specific optimization that, in
the end, improves the execution of various networks on the SpiNNaker platform
confirming the value of benchmarks. However, it is also an example of a platform
specific implementation to reach maximal performance on a given system.

One commonly agreed application for spiking neural networks is the con-
version of conventionally trained artificial neural networks (ANN) to rate-based
SNNs [7]. Although this is not using SNNs in their most efficient way, it is a
pragmatic approach that is suitable to be ported to different accelerators, inde-
pendent of their nature. In this work, we use this approach for evaluating five
distinct networks, either defined by hardware restrictions, by already published
work, or by employing neural architecture search (NAS) with Lamarck ML [11]
to optimize the network topology. We evaluate these networks on BrainScaleS,
Spikey [20], and SpiNNaker as well as the CPU simulator NEST [9] and the
CPU/GPU code-generation framework GeNN [25]. Furthermore, we use a re-
training approach with neuromorphic hardware-in-the-loop (HIL) proposed in
[23] to unlock the full potential of the analog neuromorphic hardware systems.
Section 2 outlines the target systems, the software environment, and the used
methods. Section 3 presents the results, including neuron parameter optimiza-
tion, and accuracy along with energy measurements for all target platforms.

2 Methods

In the following we introduce all target systems and the software environment
as well as the methodology followed.

2.1 Target Systems and Software

All target systems in this work support the simulation or emulation of leaky
integrate-and-fire neurons with conductance-based synapses, although especially
analog systems are limited to specific neuron models. NEST is a scaleable soft-
ware simulator suited to simulate small as well as extensive networks on compute
clusters. It is used in version 2.18 [12] executed with four threads on an Intel
Core i7-4710MQ mobile processor. GeNN [25] is a code generation framework
for the simulation of SNNs. In its current release version (4.2.1)1, it supports
generating code for a single-threaded CPU simulation or for graphics processing
units (GPU) supporting NVIDIA CUDA. Networks are evaluated on a NVIDIA
GeForce 1080 TI GPU; runtimes are measured for networks without recording
any spikes due to the overhead of getting spikes back from GPU, which effec-
tively stops the simulation at every time step and copies the data between GPU
and CPU. For this publication we make use of single precision accuracy and all
simulators use a time step of 1 ms. However, NEST is using an adaptive time-
step to integrate the neuron model. The fully digital many-core architecture

1 Here, we use the most recent GeNN from github (end of April 2020)
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SpiNNaker [8] comes in two different sizes, which are both used in this work.
The smaller SpiNN3 system is composed of four chips; the larger SpiNN5 board
consists of 48 chips. A single chip comprises 18 ARM968 general purpose CPU
cores, with each simulating up to 255 IF_cond_exp neurons. The system runs in
real-time, simulating 1 ms of model time in 1 ms wall clock time. SpiNNaker is
used with the latest released software version 5.1.0 using PyNN 0.9.4. Finally, we
make use of two mixed-signal (analog neural circuits, digital interconnect) sys-
tems: First, the Spikey system [20] supports the emulation of 384 neurons with
256 synapses each. The emulated neuron model is subject to restricted parame-
ter ranges (e.g. four bit weights, limited time constants) with some parameters
prescribed by the hardware (e.g. the membrane capacitance). The system runs at
a speedup of 10, 000, therefore taking only 0.1 µs to emulate 1 ms of model time.
Second, Spikey’s successor BrainScaleS [22] shares many of Spikey’s proper-
ties. Most notably is the now fully parameterizable neuron model, as well as the
usage of wafer-scale integration, combining 384 accessible HICANN chips on a
single wafer for a full system. Each chip implements 512 neuron circuits with 220
synapses each, where up to 64 circuits can be combined to form a single virtual
neuron, allowing more robust emulations and a higher synapse fan-in.

While all of these platforms formally support the PyNN API [6], the sup-
ported API versions differ between simulators impeding the portability of code.
Cypress2 [24] is a C++ framework abstracting away these differences. For
NEST, Spikey and SpiNNaker the framework makes use of their PyNN in-
terfaces, however, for BrainScaleS and GeNN a lower-level C++ interface is
used. Furthermore, the proposed networks studied below are part of the Spiking
Neural Architecture Benchmark Suite3 (SNABSuite)[17,18], which also covers
benchmarks like low-level synthetic characterizations and application-inspired
(sub-)tasks with an associated framework for automated evaluation.

Energy measurements have been taken with a Ruideng UM25C power meter
(SpiNNaker, Spikey), with a PeakTech 9035 for CPU simulations, or with the
NVIDIA smi tool. There is no possibility for remote energy measurements on
the BrainScaleS system. Thus, the values have been estimated from the number
of pre-synaptic events using published data in [23].

2.2 Converting DNNs to SNNs

This work is based on the idea of [3,7], where a pre-trained artificial neural
network is converted into a SNN. In this case, we train several multi-layer per-
ceptrons that differ in size to classify MNIST handwritten digits. The train-
ing uses standard batch-wise gradient-descent in combination with error back-
propagation. The conversion method exploits that the activation curve of a LIF
neuron resembles the ReLU activation curve, such that float (analog) values of
the ANN become spike rates in the SNN. All weights of the ANN are normal-
ized to the maximal weight of the full network, and then scaled to a maximal

2 https://github.com/hbp-unibi/cypress
3 The code for this and other work can be found at https://github.com/hbp-unibi/

SNABSuite

https://github.com/hbp-unibi/cypress
https://github.com/hbp-unibi/SNABSuite
https://github.com/hbp-unibi/SNABSuite
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Fig. 1. Output spikes for converted networks. Left: Output spikes of a network that
has been trained using a softmax layer as the last layer. Right: The same network
trained with only ReLU activation functions.

value either given by restrictions of the hardware platform (e.g. 4 bit weights
on Spikey/BrainScaleS) or determined by parameter optimization (see below for
details). Similarly, other parameters of the SNN are found by extensive parame-
ter tuning or are fixed due to hardware constraints. Neuron biases are not easily
and efficiently mapped to SNNs, which is why we set all bias terms to zero in
the training process of the ANN. In contrast to [7], we found that using a soft-
max layer as the last layer in the ANN for training does not necessarily decrease
the performance of the SNN. However, using soft-max will lead to an increased
number of spikes for all rejected classes (cf. Figure 1).

As the Spikey platform is very limited in size and connectivity, the smallest
and simplest network (referred to as Spikey network) consists of a single hidden
layer with 100 neurons and no inhibitory connections. Spikey requires separation
of excitation and inhibition at the neuron level and consists of two separate chips
with limited connectivity between them. Thus, we only used positive weights and
achieved the best performance using a hinge loss, which increases the weights
for the winner neurons and decreases weights for the second place neuron only.
Due to the acceleration factor of Spikey and BrainScaleS, communication band-
width limits the usable spike rates. Too high rates (input as well as inter-neuron
rates) will inevitably lead to spike loss that would reduce the performance of
the network. This naturally restricts the parameter space to be evaluated. Still,
there is a significant performance loss when applying the conversion process for
analog systems. Perfect conversion requires that every synapse with the same
weight and every neuron behaves in the same way, referring to identical activa-
tion curves. On analog systems, however, we have to deal with temporal noise
perturbing the membrane voltage, trial-to-trial variation and analog mismatch
between circuits [19]. As shown in [24], such a hardware network will perform at
roughly 60-70% accuracy compared to a simulator, even after platform specific
parameter tuning. [23] proposed to train the pre-trained neural network again
while replacing the outputs of the ANN with spike rates recorded from hardware
employing back-propagation to train a device specific network. All details can
be found in [23] (Figure 7).
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2.3 Neural Architecture Search (NAS)

Lamarck ML4[11] is a modular and extensible Python library for application
driven exploration of network architectures. This library allows to define a class
of network architectures to be examined and operations to modify and combine
those architectures. These definitions are then used by a search algorithm to
explore and evaluate network architectures in order to maximize an objective
function. For this work, the limitations of the neuromorphic hardware systems
compared to state-of-the-art processing units are the leading motivation for the
applied restrictions. The applied layer types are limited to fully connected lay-
ers which may be arranged in a nonsequential manner resulting in an acyclic
directed graph structure. To preserve the structural information of a single neu-
ral network in the exploration process, a meta graph is created to contain the
current network and the meta graph of the networks which were involved in cre-
ating it. This process is unbounded and accumulates structural information over
several generations in the meta graph. To forget unprofitable information, the
meta graph is designed to dismiss structural information that has not been used
in the last five exploration steps. One exploration step consists of combining the
meta graph of two network architectures and sampling a new path in this meta
graph in order to create an improved architecture. A new architecture is created
by sampling a path based on the quality of its best architecture and amending
it with elements that have not been examined before.

The exploration procedure is performed by a genetic algorithm configured
with a generation size of 36 network architectures of which 20 are selected based
on an exponential ranking to create new architectures for the next generation.
This next generation is created with an elitism replacement scheme that pre-
serves the best two network architectures of the previous generation. In total 75
generations have been created in the NAS to find an architecture that achieves at
least 97% evaluation accuracy. Above this threshold, an architecture is defined to
be better if it requires less than 100 neurons for increasing the accuracy by 1%.

3 Results

The first two parts of this section present the parameter tuning process used for
the converted SNNs. Details of four different networks are shown, the smallest
one was defined by the restrictions of the Spikey platform, while the remaining
networks were picked from the neural architecture search. The final part gathers
the results for all networks including one model taken from literature.

3.1 The Spikey Network and Parameter Optimization

This is the simplest network used in this work. As described above, it is motivated
by the hardware restriction of the Spikey neuromorphic hardware system and
uses a 89× 100× 10 layout which requires images to be scaled down using 3× 3

4 https://github.com/JonasDHomburg/LAMARCK ML

https://github.com/JonasDHomburg/LAMARCK_ML
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Fig. 2. Visualization of the down-scaled and converted images. The top left row shows
the first five images of the MNIST training data set. The bottom left row shows down-
scaled images using 3× 3 average pooling. The top right row represents the conversion
to spikes and back to analog values. The bottom right row shows differences between
down-scaled and converted images scaled up by a factor of 10.

average pooling (cf. Fig. 2). These restrictions limit the test-accuracy of the
pre-trained network to only 90.13%. This serves as the baseline for the following
optimizations of the most relevant SNN parameters.

– The maximal weight determines the incoming activity per neuron. If cho-
sen too high, the neuron operates in its non-linear and saturating range near
the maximum output frequency.

– The leakage/membrane time constant describes the time window in
which the neuron integrates incoming input. Too small values would require
high frequencies for encoding analog values while higher numbers lead to
saturation effects.

– The sample presentation time increases accuracy with higher values,
which in turn require more energy and time.

– A higher frequency range of input pixels improves the pixel approxima-
tion accuracy, but is subject to saturation of neurons.

Figure 3 shows parameter sweeps over the two most essential neuron parameters
for the training set. The images show large areas of high relative accuracy for the
analog platforms. On the simulated platforms, one can see the discussed effects of
saturating neurons at high weights/time constants. Here, the area of high relative
accuracy is rather narrow. Therefore, careful parameter tuning has to be done.
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Fig. 3. Sweep over the maximal input frequency. Weights for BrainScaleS are set via
low level digital weights (0 to 15).
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Fig. 4. Sweep over the sample presentation time (left) and the maximal input frequency
(right)

Taking a look at the most relevant conversion parameters, Figure 4 shows
the accuracy in relation to the sample presentation time and the maximal spike
input frequency. First, simulating more than 200 ms will result in minor improve-
ments only. Analog platforms converge a bit slower (which is partially caused
by different neuron parameters used in the simulation), and the benefits of us-
ing presentation times larger than 200 ms are minor again. However, prolonged
presentation times can cancel out some of the temporal noise on membrane
voltages and synapses. Second, all platforms gain significantly from frequencies
larger than 40 Hz. However, due to communication constraints in the accelerated
analog platforms, the accuracy decreases for values above 60 Hz. Here, two band-
width restrictions may play a major role: input spikes are inserted into the digital
network using FPGAs. Any spike loss is usually reported by the respective soft-
ware layer. However, on the wafer, there might be additional loss in the internal
network, which is not reported. Output rates of hidden and ouput layers are a sec-
ond source of potential spike loss which is only partially reported for the Spikey
system (by monitoring spike buffers), but happens silently on the BrainScaleS
system. The Spikey system reports full buffers for larger frequencies, which is
why we assume that this is the major cause for spike loss on both systems.

To reach a high efficiency on larger systems, it is crucial to fully utilize them.
Therefore, we used several parallel instances of the same network each classify-
ing a separate portion of the data. In our setup this is controlled by choosing
the batch size: a smaller batch size leads to more independent batches processed
in parallel and thus effectively reduces processing time and energy per infer-
ence. This also avoids idle cores contributing to the energy calculation. These
system-specific variations in batch size have negligible effects on the classifica-
tion accuracy. On SpiNNaker, the hardware size and the required number of
processor cores per network instance determine the parallelism. On GeNN, the
working memory required to compile the GPU code is the determining factor.
The latter is a limitation caused by using separate populations per layer, which
could be merged to possibly lead to an increased parallelism of the networks, but
not necessarily to increased efficiency. Only the Spikey system executes batches
sequentially to avoid full spike buffers.
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Fig. 5. Results of the optimization process. Highlighted are three candidates networks
at the pareto front with their respective network layout.

3.2 NAS Optimized Networks

The optimization process was driven by two major goals: to reach an accuracy
larger than 97% and at the same time to reduce the network size in terms of the
number of neurons. Results in Figure 5 reveal, that this not necessarily leads to
networks with a single hidden layer. Furthermore, the sequential neural networks
outperformed all evaluated non-sequential architectures. We have chosen three
candidates on the pareto-front for evaluation on neuromorphic hardware:

– the network with the highest evaluation accuracy (NAStop, 97.71%)
– the optimal network with the best trade-off (NAS129, 97.53%)
– a small network with still sufficient accuracy (NAS63, 96,76%)

3.3 Benchmark results

Table 1 collects the results for all target platforms. Most striking is the en-
ergy efficiency of the analog platforms, which is two orders of magnitude higher
compared to other simulators. Furthermore, HIL training recovers most of the
conversion losses found for these platforms (despite the four bit weight accu-
racy). Larger networks have not been evaluated either due to size restrictions,
or because combined spike rates of input pixels are too high to get any rea-
sonable results. The SpiNNaker system, in both variants, performs on the same
efficiency level as a CPU/GPU implementations although its technology is much
older (130 nm vs. 22 nm CPU vs. 16 nm GPU). Furthermore, there is less than
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Table 1. Results from all converted networks. Highlighted are the best values per
converted network. † Reduced number of neurons per core from its default 255 to 200
and × further reduced to 180 together with a slowed-down simulation (factor 2).

Platform Accuracy
Conversion

Loss

Wall clock

time

Energy per

Inference
Batchsize

in % in % in ms in mJ

Spikey Network (ANN accuracy: 90.13%)

Spikey 65.33 24.80 350 0.21 2500

Spikey HIL 84.99 5.14 350 0.21 100

BrainScaleS 61.65 28.43 900 0.33 10000

BrainScaleS HIL 83.87 6.56 900 0.36 10000

SpiNN3 88.41 1.72 264000 79 480

SpiNN5 88.40 1.73 23100 61 42

NEST 88.98 1.15 70542 316 2500

GeNN CPU 89.11 1.02 5070 10 10000

GeNN GPU 88.87 1.26 2623 21 100

NAS63 (ANN accuracy: 96,76%)

SpiNN3 96.04 0.63 368500 109 670

SpiNN5 96.04 0.63 30800 80 56

NEST 96.37 0.30 217252 952 10000

GeNN CPU 96.29 0.38 16659 31 10000

GeNN GPU 96.32 0.35 17881 145 160

NAS129 (ANN accuracy: 97,53%)

SpiNN3 96.86 0.67 458700 138 834

SpiNN5 97.25 0.28 38500 105 70

NEST 97.10 0.43 263134 1247 10000

GeNN CPU 97.42 0.11 20436 38 10000

GeNN GPU 97.34 0.19 18495 153 200

NAStop (ANN accuracy: 97,71%)

SpiNN3† 96.80 0.91 918500 353 1670

SpiNN5† 97.42 0.29 82500 288 150

NEST 97.35 0.36 907869 4004 10000

GeNN CPU 97.53 0.18 96324 173 10000

GeNN GPU 97.51 0.20 21355 196 265

Network from [7] (ANN accuracy of 98.84%)

SpiNN3× 97.83 1.01 2750000 1021 2500

SpiNN5† 98.77 0.07 104500 407 190

NEST 98.82 0.02 3061562 13869 10000

GeNN CPU 98.86 -0.02 314049 587 10000

GeNN GPU 98.85 -0.01 26632 293 280
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one percent loss in accuracy due to the conversion in almost all cases. However,
for the large networks the system was performing at its limits, and we had to
reduce the maximal number of neurons per core. Of course, this can be miti-
gated by further reducing the number of neurons per core or slowing down the
system with respective negative impacts on the energy per inference. Interesting
differences have been found for NEST: in some cases the accuracy is a bit lower,
but the energy per inference is one order higher than for the GeNN CPU simu-
lation. The latter is mainly due to the more accurate integrator employed by the
NEST simulator (especially the adaptive time step in the integrator), which is
also responsible for the significant energy gap between the two CPU simulators
NEST and GeNN. Furthermore, the multi-threaded execution of NEST does not
reduce the computation time compared to GeNN. With the increase of network
complexity there is next to no increase in GPU execution time, indicating that
despite parallelization of the networks, the GPU is still not utilized fully for the
smaller networks (there are 3969-86,760 simultaneously simulated neurons for
the GPU depending on the network). Still, for the larger networks, the GPU
implementation is the fastest simulation available.

The last network in Table 1 is taken from [7], as the network weights are
published within the respective repository. The layout is 784×1200×1200×10,
and thus it is significantly larger. The results show that the SpiNN3 system
still operates at its limits (as reported by the software stack) despite the used
slow-down. The other platforms show nearly the same accuracy with next to no
loss in the conversion process. Concerning the energy per inference, the larger
SpiNNaker platform is slightly better than the CPU implementation, with the
GPU being the most efficient platform.

4 Conclusion and Outlook

We have demonstrated the capability of all target platforms to simulate con-
verted deep neural networks. The loss in the conversion process is negligible
in many cases, and for analog platforms Spikey and BrainScaleS we successfully
employed retraining to reach high accuracy. Furthermore, we calculated the used
energy-per-inference, quantifying the efficiency vs. accuracy trade-off of analog
platforms. The digital SpiNNaker platform is highly efficient if fully utilized de-
spite the rather old chip manufacturing process, demonstrating the suitability for
efficient large-scale simulations. If primarily simulation time at highest accuracy
for not too large networks needs to be optimized, GeNN’s GPU backend allow
fast and efficient simulation of SNNs. The approach used in this work is not the
most efficient way of using spiking neural networks. However, the rate-coding
applied here can be replaced with a more efficient time-to-first-spike (TTFS)
encoding, using only a few spikes with much faster response times, which has
recently been demonstrated on analog hardware [10]. Therefore, the results from
this work must be seen as a conservative measure for the relative efficiency of
SNNs on neuromorphic hardware. Furthermore, we did not make use of convolu-
tional networks, because these currently cannot be mapped well to neuromorphic
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hardware. For the future of our benchmark suite we plan to include both: net-
works using TTFS encoding and convolutions. This will allow us to test more
challenging data-sets with larger and more complex networks.
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