
Adaptive Chemotaxis for improved Contour
Tracking using Spiking Neural Networks

Shashwat Shukla1†, Rohan Pathak1†, Vivek Saraswat1, and Udayan Ganguly1

Department of Electrical Engineering, IIT Bombay
shashwat.shukla@iitb.ac.in

†: Equal contribution

Abstract. In this paper we present a Spiking Neural Network (SNN) for
autonomous navigation, inspired by the chemotaxis network of the worm
Caenorhabditis elegans. In particular, we focus on the problem of contour
tracking, wherein the bot must reach and subsequently follow a desired
concentration setpoint. Past schemes that used only klinokinesis can fol-
low the contour efficiently but take excessive time to reach the setpoint.
We address this shortcoming by proposing a novel adaptive klinotaxis
mechanism that builds upon a previously proposed gradient climbing
circuit. We demonstrate how our klinotaxis circuit can autonomously
be configured to perform gradient ascent, gradient descent and subse-
quently be disabled to seamlessly integrate with the aforementioned kli-
nokinesis circuit. We also incorporate speed regulation (orthokinesis) to
further improve contour tracking performance. Thus for the first time,
we present a model that successfully integrates klinokinesis, klinotaxis
and orthokinesis. We demonstrate via contour tracking simulations that
our proposed scheme achieves an 2.4x reduction in the time to reach the
setpoint, along with a simultaneous 8.7x reduction in average deviation
from the setpoint.

Keywords: Spiking Neural Network · Navigation · C. elegans.

1 Introduction

The worm Caenorhabditis elegans (C. elegans) is a model organism for neurobi-
ology as it displays fairly sophisticated behavior despite having only 302 neurons.
One such behavior of interest is chemotaxis: the ability to sense chemicals such
as NaCl and to then move in response to the sensed concentration. The worm
prefers certain concentrations of NaCl as it associates them with finding food,
with these concentrations thus acting as setpoints for the worm. This ability to
search for and follow the level set (which is an isocontour in 2D) for a partic-
ular setpoint concentration is called contour tracking, and has been observed
experimentally in the worm [9]. Remarkably, the worm is able to track contours
in a highly resource-constrained manner with just one concentration sensor and
a small number of neurons. Contour tracking is also an important function for
autonomously navigating robots, and it is thus of interest from an engineer-
ing standpoint to study the small yet efficient chemotaxis circuit of C. elegans.

ar
X

iv
:2

00
8.

00
31

7v
1

 [
q-

bi
o.

N
C

]
 1

 A
ug

 2
02

0

2 Shashwat Shukla †, Rohan Pathak †, Vivek Saraswat, and Udayan Ganguly

The emergence of energy-efficient nanoscale Neuromorphic hardware [4] moti-
vates mapping these compact chemotaxis circuits onto Spiking Neural Networks
(SNNs) in order to instantiate autonomously navigating robots operating under
severe resource and energy constraints.

One of the strategies that the worm uses is called klinokinesis, wherein the
worm makes abrupt turns away from its current direction. Klinokinesis requires
the worm to compare the current sensed concentration with past samples to
estimate the concentration gradient along its path of motion. It turns away
when it is above the setpoint and senses a positive gradient, or if it is below
the setpoint and senses a negative gradient. It thus corrects its path so that it
is always moving towards the setpoint. A model for the sensory neurons used
to compute temporal derivatives was proposed in [1]. Santurkar and Rajendran
added motor neurons to the model from [1] to propose an SNN for klinokine-
sis [10]. They also demonstrated hardware compatibility with standard CMOS
circuitry. However, their SNN required external currents to operate correctly
and thus was not an autonomous solution. Shukla, Dutta and Ganguly resolved
this problem by designing SNNs for the rate-coded logic operations required by
the klinokinesis circuit and ensuring correctness of operation [11]. Furthermore,
they incorporated an additional sub-circuit to allow the worm to escape local
extrema, reduced the response latency of the SNN by incorporating anticipatory
control and demonstrated feasibility on nanoscale neuromorphic hardware.

An important limitation of klinokinesis is that it only uses the sign of the
gradient and not its magnitude. Thus while klinokinesis ensures that the worm is
always moving towards the setpoint, it does not ensure that it takes the shortest
path. By definition, the direction with the highest gradient magnitude corre-
sponds to the path of steepest ascent or descent. Indeed, the worm is known to
align itself along (or against) the gradient via gradual turns in a process called
klinotaxis. The worm performs klinotaxis by estimating the spatial gradient in
the direction perpendicular to its current path by comparing concentration val-
ues to the left and right of its head while moving in a snake-like sinusoidal
motion, using this estimate to gradually correct its path. Izquierdo and Lockery
proposed a mechanistic model for gradient ascent using klinotaxis and learned
model parameters via evolutionary algorithms [8]. Izquierdo and Beer subse-
quently attempted to map this model onto the connectome of the worm [7].

The first important contribution of this paper is to build upon the gradi-
ent ascent circuit in [8] to develop a novel adaptive klinotaxis circuit that can
be autonomously configured to perform gradient ascent, gradient descent, and
disabled upon reaching the setpoint. Second, we implement this adaptive klino-
taxis circuit with spiking neurons and then integrate it with the klinokinesis SNN
from [11]. It is important to note that these strategies serve complementary roles,
with klinokinesis allowing for rapid turns to ensure that the worm always moves
closer to the setpoint, and klinotaxis allowing the worm to gradually optimize
its path [5,6]. Indeed, the worm is known to use klinokinesis and klinotaxis in
tandem [5]. However, in the context of contour tracking, it is important to un-
derstand how klinotaxis and klinokinesis can work together. In particular, the

Title Suppressed Due to Excessive Length 3

Fig. 1. (a) Timeline and comparison of this paper with past literature. (b) Gradient
ascent to illustrate navigation mechanisms. Left: The bot makes abrupt turns to correct
its path by using only the sign of the gradient, and thus takes a circuitous route to the
peak. Center: The bot gradually corrects its path to align with the direction of steepest
ascent and thus takes a much shorter route to the peak. Also note the sinusoidal motion
of the bot. Right: This plot is only to visualize orthokinesis. Note that the arrows
become denser close to the peak, depicting how the bot slows down near the setpoint
and regions with large gradients.

worm must align with the gradient until it reaches the setpoint and must sub-
sequently move perpendicular to the gradient to follow the setpoint contour,
thus requiring the worm to change its behavior based on how close it is to the
setpoint. This problem was previously encountered in work by Skandari, Iino
and Manton who proposed a non-adaptive, non-spiking model that attempts to
extend Lockery’s work to perform contour tracking [12]. Their simulations show
that their network for reaching the setpoint and their network for subsequently
following the contour are incompatible with each other, leading to a failure in
tracking contours near regions with large gradients. The adaptive nature of our
klinotaxis circuit allows us to address this important problem. Furthermore, the
gradual nature of klinotaxis steering leads to large deviations from the setpoint
while following the desired contour, a problem that we are able to address by
also including the klinokinesis circuit to enable faster turns. Our circuit thus
allows us to seamlessly integrate the benefits of both these navigation strategies.

We also incorporate orthokinesis in our SNN model, wherein the bot can also
regulate its speed as a function of sensed concentration [3]. This allows it to slow
down near the setpoint and near regions with large gradients, leading to a further
reduction in deviations from the setpoint while following the desired contour.
To the best of our knowledge, this is the first circuit model that successfully
integrates klinokinesis, klinotaxis and orthokinesis.

4 Shashwat Shukla †, Rohan Pathak †, Vivek Saraswat, and Udayan Ganguly

2 Proposed Algorithm

2.1 Adaptive Klinotaxis

Klinotaxis is the mechanism whereby, as the worm moves along its sinusoidal
trajectory, it compares the values of sensed concentrations in one half-cycle to
those in the next half-cycle, and then changes its course based on this infor-
mation. Klinotaxis has typically been studied in the context of gradient ascent,
wherein the worm will bias its motion towards the side which is better aligned
with the local gradient direction, thus gradually aligning with the gradient and
performing steepest ascent, and thus allowing the worm to reach the peak faster.
Crucially, if the worm had two spatially separated concentration sensors, then it
could compare the values from these sensors to estimate the gradient direction,
which is called tropotaxis. However, the worm only has one concentration sensor,
thus requiring it to use its own body motion to sample to the left and right of
its path, as it does with its sinusoidal motion. Such a setting is of great inter-
est for highly resource constrained bots that are too small to carry two bulky
sensors and where the spatial separation between sensors is too small to enable
tropotaxis. In this paper, we enable our bot to not only perform gradient ascent,
but also enable gradient descent and the ability to switch off the klinotaxis mech-
anism entirely. Furthermore, this change in behavior is affected autonomously
based on sensed concentration, and we thus call this adaptive klinotaxis.

Fig. 2. Block Diagram for the full network.

The gradient detector and klinotaxis blocks are depicted in Fig. 3(a). Like
the worm, our bot has a single concentration sensor whose output at time t is the
sensed concentration C(t). This C(t) is used to compute an adaptive difference-
estimate for the gradient, Iad(t), given as:

Iad(t) =
C(t)− Cavg(t)
Cavg(t) · v(t)

(1)

Here Cavg(t) is the sensed concentration averaged over the past 10 seconds,
and thus C(t) − Cavg(t) is an estimate for the temporal derivative dC

dt . This is

Title Suppressed Due to Excessive Length 5

Fig. 3. (a) Network diagram for the gradient detector and klinotaxis blocks. The
gradient detector functions by computing a temporal estimate for the gradient:
C(t) − Cavg(t), which is normalized by Cavg(t) to make this estimate scale-invariant.
It is further divided by v(t) to convert the temporal derivative to a spatial derivative
(dC

dt
= v(t) · dC

dx
). This spatial derivative is then rate-coded using two sparsely firing

leaky-integrate-and-fire neurons, with the refractory periods acting as saturating non-
linearity. (b) Signal flow through the klinotaxis block. The bias shifts the piecewise
linear sigmoidal response curve to the left or right, while the sum of currents from the
oscillator and gradient detector, I±ph(t), is the input to these shifted response curves.
For b = 0.0: The positive parts of the input are retained and thus the turning rate
increases with Ig(t). Thus the bot turns slower when aligned against the gradient -
gradient descent. For b = 0.5: Both the positive and negative parts of the input are
retained and the effect of Ig(t) is cancelled out. Thus the bot’s turning rate is indepen-
dent of the gradient - klinotaxis disabled. For b = 1.0: Effectively, the negative parts
of the input are retained and thus the turning rate decreases with Ig(t). Thus the bot
turns slower when aligned along the gradient - gradient ascent.

6 Shashwat Shukla †, Rohan Pathak †, Vivek Saraswat, and Udayan Ganguly

dynamically scaled by 1
Cavg(t)

to allow the gradient detector neurons to effectively

utilize available signaling bandwidth and to make its response invariant to the
average concentration, allowing our bot to operate in environments where the
concentrations can vary over many orders of magnitude. This is thus a simple
but important modification to the static scaling used in [10,11,8,7]. This is in
turn scaled by 1

v(t) to convert the temporal derivative to a spatial derivative, in

line with dC
dx = 1

v(t) ·
dC
dt . This requires the existence of a feedback loop which

gives the sensory neurons access to the bot’s velocity, as depicted in Fig. 2. Note
that such divisive gain modulation has also been observed in neurons in-vivo
[2,13]. Also note that while operating with a constant speed, as was the case
in [10,11], the temporal and spatial gradients are linearly proportional to each
other and thus there was no need for such speed-dependent scaling in past work.

The positive and negative parts of this signal given are respectively denoted
by I+ad(t) = Iad(t) · δ(Iad(t) > 0) ; I−ad(t) = Iad(t) · δ(Iad(t) < 0), where δ(.) is a
delta-function which is 1 if the input condition is true and is 0 otherwise. Next,
I+ad(t) and I−ad(t) are respectively fed into neurons N+ and N−, noting that Iad(t)
was encoded this way using two neurons because neurons can only have positive
firing rates. We model N+ and N− as leaky integrate-and-fire (LIF) neurons
with respective membrane potentials V+ and V− which evolve as:

CG
dV+
dt

= I+ad(t)−
V+(t)

RG
; CG

dV−
dt

= I−ad(t)−
V−(t)

RG
(2)

Here CG and RG are respectively the membrane capacitance and resistance.
The neurons N+ and N− fire when V+ and V− respectively cross the firing
threshold VT , and the membrane voltage is then reset to 0 for the duration of
the refractory period. The spike-trains of N+ and N− are convolved with the

kernel κ(t) = e
−t
τ1 − e

−t
τ2 ; τ1 > τ2 to generate the respective output currents

I+g (t) and I−g (t). This is an instance of rate-coding wherein I±g (t) increases with

I±ad(t). However this mapping is non-linear due to the refractory period, and
crucially, I±g (t) saturates for large values of I±ad(t). The refractory period and
parameters of κ(t) are chosen so that this maximum value of I±g (t) is 1, a fact
that will be used in the klinotaxis circuit. Apart from this non-linear response,
the other advantage of using spiking neurons is that unlike analog neurons they
are not always on and are thus much more energy-efficient. Finallly, the rate-
coded gradient estimate is given as Ig(t) = I+g (t)− I−g (t).

Having discussed the gradient detector circuit, we now proceed to describe
the klinotaxis circuit. The first component is the oscillator current Iosc(t) with
time period Tosc, which is used to generate two oscillatory signals with opposite
phases as: I+osc(t) = Iosc(t) and I−osc(t) = −Iosc(t). The second component is the
bias function which determines the mode of operation of the klinotaxis circuit
and is denoted by b(t). The third input, Ig(t), comes from the gradient detector
discussed above. Output from these three blocks is fed to the two non-linear
“phase” blocks, denoted by “Phase(±)” in Fig. 3. These phase blocks are the
most important part of the circuit, yielding output currents I±ph(t). The net

Title Suppressed Due to Excessive Length 7

turning rate dθ(t)
dt due to klinotaxis is given by the scaled difference in output

of these two phase blocks, where θ(t) is the bot’s steering angle. We choose the
convention wherein a positive change in θ will correspond to turning clockwise.

Iosc(t) = I+osc(t) = −I−osc(t) = sin(
2πt

Tosc
) (3)

b(t) =

1.0 ; (CT − C(t)) > ε
0.5 ; |C(t)− CT | < ε
0.0 ; (C(t)− CT) > ε

(4)

Ig(t) = I+g (t)− I−g (t) (5)

I±ph(t) = σ(α · I±osc(t) + β · Ig(t) + b(t)) (6)

dθ(t)

dt
= wm · (I+ph(t)− I−ph(t)) (7)

To understand (4), observe that if we wish to reach the setpoint concentration
CT to within an tolerance ε, it is straightforward to see that we want b(t) =
1.0 (gradient ascent) for C(t) < (CT − ε), b(t) = 0.0 for C(t) > (CT + ε)
(gradient descent), and b(t) = 0.5 (disable klinotaxis) for |C(t)− CT | < ε. By
disabling klinotaxis close to the setpoint, we allow klinokinesis to seamlessly
take over, allowing the bot to follow the setpoint contour using klinokinesis as
demonstrated in [11]. These mechanisms thus serve complementary roles, with
klinotaxis used to reach the setpoint, and klinokinesis to subsequently follow
the setpoint contour. In (6), the non-linear response of the phase blocks, σ(x)
(for input x), is equal to 0 for x < 0, x for 0 < x < 1, and 1 for x > 1. Thus
it increases linearly between 0 and 1 and saturates outside this range. While
we have used this piecewise-linear form for σ(x) in subsequent analysis, we have
used a smoother and more biologically feasible approximation in our final contour
tracking simulations, given as σ(x) ≈ 0.5 · (1 + tanh(2 · x − 1)). Also note that
α, β and wM are positive scaling constants.

We now proceed to describe the adaptive klinotaxis mechanism for the half-
cycle from 0 to Tosc/2. We will first do this for b = 1.0, corresponding to gradient
ascent. In this half-cycle I+osc(t) is positive and thus σ(1+α·I+osc(t)) = 1, meaning
that I+ph(t) saturates to 1. On the other hand, as I−osc(t) is negative during this

cycle, σ(1+α·I−osc(t)) = 1+α·I−osc(t) and thus I−ph(t) lies in the linear region. Note
that these are approximate statements that ignore the contribution from Ig(t).

While it can be verified that these statements are exact for Tosc
2π sin

−1(βα) <

t < Tosc
2 (by noting that both Ig(t) and Iosc(t) have maximum amplitude of

1), they will be assumed for the entire half-cycle for ease of analysis. We are
thus interpreting β · Ig(t) as a small perturbation to the output. We then have
dθ(t)
dt = 1−(1+α·I−osc(t)+β ·Ig(t)) = α·(−I−osc(t))−β ·Ig(t) = α·Iosc(t)−β ·Ig(t).

Thus we see that for b = 1.0 the bot turns slower when aligned along the gradient
(Ig(t) > 0) and turns faster when aligned against the gradient (Ig(t) < 0). The
bot’s net motion is thus biased and it tends to align along the gradient, thus
performing gradient ascent. This is depicted in Fig. 4(c) wherein the turning

8 Shashwat Shukla †, Rohan Pathak †, Vivek Saraswat, and Udayan Ganguly

rate is higher and lower respectively for the red part (Ig(t) < 0) and green part
(Ig(t) > 0) of the trajectories.

Fig. 4. (a) Path of the bot over five oscillator cycles for the three choices of b. Note
how the trajectory bends towards, does not bend, and bends away from the steepest
gradient direction respectively for b = {1.0, 0.5, 0.0}. (b) Timeplots for system variables
over a represenative cycle, one for each choice of b. The top plot shows that the rate-
coding estimate is indeed able to follow the true gradient. The middle plot shows the
difference in clipping of left (I+ph(t)) and right (I−ph(t)) motor neurons, for choices of b.
The bottom plot shows how the gradient changes the turning rate vis-a-vis the zero-
gradient case. Note that there is no skew for b = 0.5, while the skews for b = 0.0 and
b = 1.0 are precisely opposite to one another. (c) Trajectory of the bot performing
gradient ascent for a half-cycle, with and without klinotaxis enabled. Top: The bot
is initially aligned against the gradient and is turning clockwise. Bottom: The bot is
initially aligned along the gradient and is turning anticlockwise. The green and red
parts of the curves respectively correspond to sensing positive and negative gradients,
making the bot turn slower and faster respectively. In both cases the axis of motion
is initially perpendicular to the gradient and at the end of the half-cycle this axis has
rotated clockwise towards the gradient direction when klinotaxis is enabled.

Next, we consider gradient descent with b = 0.0. In the first half-cycle I−osc(t)
is negative and thus σ(0 +α · I−osc(t)) = 0, and thus I−ph(t) saturates to 0. On the

other hand, as I+osc(t) is positive during this cycle, σ(0+α·I+osc(t)) = α·I+osc(t) and
thus I+ph(t) lies in the linear region. Again, treating β ·Ig(t) as a perturbation that

only affects the non-saturated phase, we have dθ(t)
dt = (α ·I+osc(t)+β ·Ig(t))−0 =

α · Iosc(t) + β · Ig(t). Thus we see that for b = 0.0 the bot turns faster when
aligned along the gradient (Ig(t) > 0) and turns slower when aligned against the
gradient (Ig(t) < 0). The bot’s net motion is thus biased and it tends to align
against the gradient, thus performing gradient descent.

Finally, we discuss the case of disabling klinotaxis by setting b = 0.5. Fur-
thermore, we choose hitherto unspecified constants as α = 0.4 and β = 0.1. For

Title Suppressed Due to Excessive Length 9

all time t we then have that |0.1 · Ig(t)± 0.4 · Iosc(t) + 0.5| < 0.1+0.4+0.5 = 1,
recalling that by design, both Ig(t) and Iosc(t) have a maximum magnitude of 1.
Thus for b = 0.5, neither I+ph(t) nor I−ph(t) saturate and both lie in the linear re-

gion. We then have dθ(t)
dt = (α·I+osc(t)+β ·Ig(t)+0.5)−(α·I−osc(t)+β ·Ig(t)+0.5) =

α · (I+osc(t)− I−osc(t)) = 2α · Iosc(t). Thus in this case, Ig(t) has no effect on the
turning rate of the bot and hence the klinotaxis mechanism stands disabled. We
note that the amplitudes of α = 0.4 and β = 0.1 respectively for the oscillatory
and gradient terms were chosen such that they sum up to 0.5. This was done to
maximize the dynamic range of input in the linear output regime, while also not
allowing this input to saturate. Also note that the larger value of 0.4 was chosen
for the oscillatory component to ensure that the bot swerves to the left and right
with a large enough amplitude and thus samples it local environment, despite
the modulatory effect of the gradient term. At the same time, the amplitude of
0.1 for the gradient term is large enough to ensure that it does have a sufficiently
large modulatory effect to enable klinotaxis. In summary, the turning rate in the
first half-cycle is given as:

dθ

dt
=

wM · (α · Iosc(t) + β · Igrad(t)) ; b = 0.0
wM · 2α · Iosc(t) ; b = 0.5

wM · (α · Iosc(t)− β · Igrad(t)) ; b = 1.0
(8)

It can be verified that in the next half-cycle from Tosc/2 to Tosc, we get the
same expression for dθ

dt as given in (8), but now with a negative sign. Thus the
bot turns clockwise in one half-cycle and anti-clockwise in the next. Note also
that it suffices to describe one full-cycle as the same mechanism recurs over time.

2.2 Klinokinesis

Klinokinesis is a course correction algorithm, wherein the worm turns around
when it senses that it is moving away from the desired setpoint concentration.

This happens in two cases: when it senses dC(t)
dt > 0, C(t) > CT or if dC(t)

dt <
0, C(t) < CT . Note that this requires computing an AND operation over the
sensed gradient and concentration values for which we use the SNN developed
in [11]. While klinokinesis allows for rapid corrections to the bot’s path and
is thus well suited to closely following the contour once it is reached, it is not
capable of finding the shortest path to the setpoint as it only uses the sign of the
gradient and does not seek out the direction of steepest descent, thus motivating
the inclusion of the complementary mechanism of klinotaxis.

2.3 Orthokinesis

We incorporate orthokinesis to reduce overshoot whilst following the setpoint
contour using klinokinesis. We describe the bot’s speed in discrete-time for
ease of understanding, while noting that it is straightforward to convert this
to continuous-time. For discrete time 1, ..., t− 1, t, ..., the bot speed is given as:

10 Shashwat Shukla †, Rohan Pathak †, Vivek Saraswat, and Udayan Ganguly

v[t] = vc +
k · v[t− 1] · |C[t]− CT |

a+
∣∣∣dC[t−1]

dx

∣∣∣ (9)

Here vc is a constant that ensures that the worm continues to move along the
setpoint contour despite the second term going to 0 close to CT . Furthermore,
the second term is proportional to v[t − 1] as a means of enforcing continuity
in the values of v[t]. The term |C[t]− CT | is included so that the worm slows
down close to the setpoint. Thus by allowing the worm to slow down near the
setpoint concentration, we enable improved contour tracking. We would also
like the bot to slow down near regions with high gradient magnitudes so that

it does not overshoot the setpoint. This is ensured by including dC[t−1]
dx in the

denominator, which is the output of the gradient detector in the previous time
step. Finally, k is a constant scaling factor while a is a constant that ensures
that the denominator is never 0.

3 Results and Conclusions

The algorithms are visually compared in Fig.5(a). Note that the bot was started
from the same starting point and initial angle in all three plots. Using only kli-
nokinesis (left), the bot takes a long route to reach the setpoint and exhibits large
overshoots around the setpoint contour. Adding klinotaxis (middle) allows the
bot to reach the setpoint using a much faster route while also reducing setpoint
deviation. Adding orthokinesis (right) further reduces the setpoint deviation.

We now define the Time to Reach Ratio (TRR) of an algorithm A for a
setpoint CT as the time taken to first reach CT using A divided by the time to
first reach CT using klinokinesis. Clearly, the TRR also depends on the particular
concentration landscape, starting point and initial angle. Here we consider the
aggregated TRR obtained by averaging the TRR over 10 landscapes, 10 starting
points for each landscape and 10 initial angles for each tuple of landscape and
starting point. Also note that the TRR for klinokinesis will trivially be 1.0. The
second metric is adopted from [10,11] to quantify the deviation from the setpoint
once the bot has reached the contour. This metric is the average deviation ratio

from setpoint (ADR), defined as ADR = 1
T−T0

∫ T
T0

|C(t)−CT |
Cmax−Cmin dt, where T0 is

the first time that the bot reaches CT , T is the total simulation time, Cmax
and Cmin are respectively the maximum and minimum concentrations values on
the landscape. Thus the ADR measures the time-averaged ratio of the absolute
deviation to the landscape concentration range. We report the aggregated ADR
by averaging over the same set of configurations as for the aggregrated TRR.

The algorithms are benchmarked using these two metrics in the left panel
of Fig. 5(b). We find that there is a drastic reduction in the TRR, by a factor
of 2.6, due to the inclusion of klinotaxis, implying that the bot reaches the set-
point faster. Remarkably this improvement is achieved despite the bot’s effective
speed being reduced by a factor of roughly 7.5 by moving along a sinusoidal path
instead of a straight line. As expected, a second effect of this reduced effective

Title Suppressed Due to Excessive Length 11

Fig. 5. (a) The dotted line in all three contour tracking plots is the setpoint contour
corresponding to CT = 55mM . (b) Left: Benchmarking with TRR and ADR. Right:
Impact on ADR of dividing by Cavg(t) while computing the gradient estimate.

velocity is that the inclusion of klinotaxis also reduces the ADR, by a significant
factor of 3.8. The TRR is slightly larger with the inclusion of orthokinesis as
the bot slows down near the setpoint. However we observe a larger reduction
in ADR, demonstrating that orthokinesis can adaptively trade-off speed for a
significant reduction in setpoint overshoot. The TRR and ADR respectively re-
duced by a factor of 2.4 and 8.7 by including both klinotaxis and orthokinesis
(w.r.t just klinokinesis). Also note that the standard deviation of the TRR for
both the “klinokinesis + klinotaxis” and “klinokinesis + klinotaxis + orthoki-
nesis” algorithms were found to be 0.05. The standard deviation of the ADR for
“klinokinesis only”, “klinokinesis + klinotaxis” and “klinokinesis + klinotaxis +
orthokinesis” algorithms were respectively found to be 0.34, 0.08 and 0.04.

In the right panel of Fig.5(b), we quantitatively demonstrate the drastic im-
provement in robustness of chemotaxis due to the inclusion of Cavg(t) in the
denominator of (1). We plot the ADR for the “klinokinesis + klinotaxis + or-
thokinesis” algorithm as a function of average landscape concentration. Without
adaptive scaling (red), the ADR is comparable to that with adaptive scaling
(green) in a narrow range of average concentration, but degrades rapidly away
from this optimal range. Similar plots were also obtained for the “klinokinesis
only” and “klinokinesis + klinotaxis” algorithms. This shows that previously pro-
posed chemotaxis algorithms in the literature (that did not incorporate dynamic
scaling) are not robust to concenctration rescaling, highlighting the importance

12 Shashwat Shukla †, Rohan Pathak †, Vivek Saraswat, and Udayan Ganguly

of the novel dynamic scaling proposed in this paper. Finally, we refer the reader
to [10] for a demonstration of the SNN-based klinokinesis-only strategy achieving
lower ADR compared to PID control while also being significantly more energy
efficient, with these results holding transitively for the schemes proposed here.

In conclusion, we have presented a scale-invariant, adaptive chemotaxis algo-
rithm using spiking neurons that successfully combines klinotaxis, klinokinesis
and orthokinesis. This allows us to perform robust, resource constrained and
energy efficient contour tracking while achieving state-of-the-art performance.

References

1. Appleby, P.A.: A model of chemotaxis and associative learning in c. elegans. Bio-
logical cybernetics 106(6-7), 373–387 (2012)

2. Bastian, J.: Gain control in the electrosensory system: a role for the descending pro-
jections to the electrosensory lateral line lobe. Journal of Comparative Physiology
A 158(4), 505–515 (1986)

3. Benhamou, S., Bovet, P.: How animals use their environment: a new look at kinesis.
Animal Behaviour 38(3), 375–383 (1989)

4. Dutta, S., Kumar, V., Shukla, A., Mohapatra, N.R., Ganguly, U.: Leaky integrate
and fire neuron by charge-discharge dynamics in floating-body mosfet. Scientific
reports 7(1), 8257 (2017)

5. Iino, Y., Yoshida, K.: Parallel use of two behavioral mechanisms for chemotaxis in
caenorhabditis elegans. Journal of Neuroscience 29(17), 5370–5380 (2009)

6. Itskovits, E., Ruach, R., Zaslaver, A.: Concerted pulsatile and graded neural dy-
namics enables efficient chemotaxis in c. elegans. Nature communications 9(1),
2866 (2018)

7. Izquierdo, E.J., Beer, R.D.: Connecting a connectome to behavior: an ensemble of
neuroanatomical models of c. elegans klinotaxis. PLoS computational biology 9(2),
e1002890 (2013)

8. Izquierdo, E.J., Lockery, S.R.: Evolution and analysis of minimal neural circuits for
klinotaxis in caenorhabditis elegans. Journal of Neuroscience 30(39), 12908–12917
(2010)

9. Luo, L., Clark, D.A., Biron, D., Mahadevan, L., Samuel, A.D.: Sensorimotor con-
trol during isothermal tracking in caenorhabditis elegans. Journal of experimental
biology 209(23), 4652–4662 (2006)

10. Santurkar, S., Rajendran, B.: C. elegans chemotaxis inspired neuromorphic circuit
for contour tracking and obstacle avoidance. In: 2015 International Joint Confer-
ence on Neural Networks (IJCNN). pp. 1–8. IEEE (2015)

11. Shukla, S., Dutta, S., Ganguly, U.: Design of spiking rate coded logic gates for c.
elegans inspired contour tracking. In: International Conference on Artificial Neural
Networks. pp. 273–283. Springer (2018)

12. Skandari, R., Iino, Y., Manton, J.H.: On an analogue signal processing circuit in
the nematode c. elegans. In: 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). pp. 965–968. IEEE
(2016)

13. Vestergaard, M., Berg, R.W.: Divisive gain modulation of motoneurons by inhibi-
tion optimizes muscular control. Journal of Neuroscience 35(8), 3711–3723 (2015)

	Adaptive Chemotaxis for improved Contour Tracking using Spiking Neural Networks

