Skip to main content

The Forgotten Hyperparameter:

Introducing Dilated Convolution for Boosting CNN-Based Side-Channel Attacks

  • Conference paper
  • First Online:
Book cover Applied Cryptography and Network Security Workshops (ACNS 2020)

Abstract

In the evaluation of side-channel resilience, convolutional neural network-based techniques have been proved to be very effective, even in the presence of countermeasures. This work is introducing the use of dilated convolution in the context of profiling side-channel attacks. We show that the convolutional neural network that uses dilated convolution increases its performance by taking advantage of the leakage distributed through scattered points in leakage traces. We have validated the feasibility of the proposal by comparing it with the state-of-the-art approach. We have conducted experiments using ASCAD (with random key), and as a result the guessing entropy of the attack converges to zero for around 550 synchronized traces and for 3 000 desynchronised traces. In both groups of experiments, we have used the same architecture to train the model, changing just dilatation rate and kernel length, which indicates a reduction of the complexity in the deep learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    i.e. intermediate value and mask leaks.

  2. 2.

    https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA.

  3. 3.

    Including One Cycle Policy to deal with the learning rate.

  4. 4.

    As well as kernel length of 3 with stride value of 6.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems, software available from tensorflow.org (2015). https://www.tensorflow.org/

  2. Belgarric, P., et al.: Time-frequency analysis for second-order attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 108–122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_8

    Chapter  Google Scholar 

  3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_5

    Chapter  Google Scholar 

  4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  5. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8_1

    Chapter  Google Scholar 

  6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  7. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  8. Choi, K., Fazekas, G., Sandler, M., Cho, K.: Convolutional recurrent neural networks for music classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2392–2396. IEEE (2017)

    Google Scholar 

  9. Chollet, F., et al.: Keras (2015). https://keras.io

  10. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans. Inf. Forensics Secur. 13(2), 490–501 (2018)

    Article  Google Scholar 

  11. Coron, J.S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) Fast Software Encryption, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

    Chapter  Google Scholar 

  12. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  MATH  Google Scholar 

  13. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016)

  14. Fan, G., Zhou, Y., Zhang, H., Feng, D.: How to choose interesting points for template attacks more effectively? In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 168–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27998-5_11

    Chapter  Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press (2016)

    Google Scholar 

  16. Hajra, S., Mukhopadhyay, D.: Multivariate leakage model for improving non-profiling DPA on noisy power traces. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 325–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12087-4_21

    Chapter  Google Scholar 

  17. Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., Hikosaka, S.: Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1442–1450 (2018)

    Google Scholar 

  18. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using convolutional neural networks with domain knowledge. In: Selected Areas in Cryptography - SAC 2018–25th International Conference, Calgary, AB, Canada, 15–17 August 2018, Revised Selected Papers, pp. 479–498 (2018)

    Google Scholar 

  19. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods for leakage analysis and symmetric key recovery. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_26

    Chapter  Google Scholar 

  20. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Cryptology ePrint Archive 2018, 1023 (2018)

    Google Scholar 

  21. Maghrebi, H.: Deep learning based side channel attacks in practice. IACR Cryptology ePrint Archive 2019, 578 (2019)

    Google Scholar 

  22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, vol. 31. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-38162-6

  23. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on MLP in DPA contest V4.2. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 223–226 (2016)

    Google Scholar 

  24. Martinasek, Z., Zapletal, O., Vrba, K., Trasy, K.: Power analysis attack based on the MLP in DPA contest v4 (07 2015)

    Google Scholar 

  25. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general characterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) International Workshop on Constructive Side-Channel Analysis and Secure Design, pp. 145–167. Springer (2019). https://doi.org/10.1007/978-3-030-16350-1_9

  26. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-channel analysis. IACR Trans. Cryptographic Hardware Embed. Syst. 2020, 348–375 (2020)

    Google Scholar 

  27. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 78. Association for Computing Machinery, New York (2004)

    Google Scholar 

  28. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: SSW (2016)

    Google Scholar 

  29. Perin, G., Ege, B., Chmielewski, L.: Neural Network Model Assessment for Side-Channel Analysis. IACR Cryptology ePrint Archive 2019, 722 (2019)

    Google Scholar 

  30. Picek, S., Heuser, A., Jovic, A., Batina, L., Legay, A.: The secrets of profiling for side-channel analysis: feature selection matters. IACR Cryptology ePrint Archive 2017, 1110 (2017)

    Google Scholar 

  31. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 209–237 (2018)

    Google Scholar 

  32. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. IACR Cryptology ePrint Archive 2018, 53 (2018)

    Google Scholar 

  33. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6_35

    Chapter  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  35. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  36. Thiebeauld, H., Vasselle, A., Wurcker, A.: Second-order scatter attack. IACR Cryptology ePrint Archive 2019, 345 (2019)

    Google Scholar 

  37. Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 107–131 (2019)

    Google Scholar 

  38. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_1

    Chapter  Google Scholar 

  39. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2016)

    Google Scholar 

  40. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed. Syst. 2020(1), 1–36 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Servio Paguada or Igor Armendariz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paguada, S., Armendariz, I. (2020). The Forgotten Hyperparameter:. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2020. Lecture Notes in Computer Science(), vol 12418. Springer, Cham. https://doi.org/10.1007/978-3-030-61638-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61638-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61637-3

  • Online ISBN: 978-3-030-61638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics