
Dynamic Group Key Agreement for
Resource-Constrained Devices using Blockchains

Anonymous

No Institute Given

Abstract. Dynamic group key agreement (DGKA) protocols are one
of the key security primitives to secure multiparty communications in
decentralized and insecure environments while considering the instant
changes in the communication group. However, with the ever-increasing
number of connected devices, traditional DGKA protocols have perfor-
mance challenges since each member in the group has to make several
computationally intensive operations while verifying the keying materials
in order to compute the resulting group key. To overcome this issue, we
propose a new approach for DGKA protocols by utilizing Hyperledger
Fabric framework as a blockchain platform. To this end, we migrate the
communication and verification overhead of DGKA participants to the
blockchain network in our developed scheme. This paradigm allows a
flexible DGKA protocol that considers resource-constrained entities and
trade-offs regarding distributed computation. According to our perfor-
mance analysis, participants with low computing resources can efficiently
utilize our protocol. Furthermore, we have demonstrated that our proto-
col has the same security features as other comparable protocols in the
literature.

Keywords: Group Key Agreement · Blockchain · Hyperledger Fabric.

1 Introduction

The digitalization of daily life and human activities has become a reality via the
emergence of more prevalent and high-performance communications and net-
working. With the advent of 5G networks, innovative and collective solutions
which consist of different type of devices are now much more feasible. The envis-
aged use-cases and applications involve a huge number of devices and pervasive
data sharing and dissemination such as massive Machine-Type Communications
(mMTC) and Multi-access Edge Computing (MEC) scenarios. Although some
of these systems require ultra-reliable and real-time connectivity in more pre-
set conditions (e.g., telesurgery or industrial networks), many others require a
dynamic environment where interaction between networked entities changes fre-
quently and minor latency due to security functions can be tolerated (e.g., ad
hoc data sharing or sensor-based monitoring scenarios). Moreover, IoT devices
with low computing power and limited energy resources are expected to operate
seamlessly and efficiently in future networks. In such systems, as the number of

connected devices increases rapidly, decentralized and efficient secure communi-
cation frameworks are essential to meet the service requirements.

As a secure communication facilitator, group key agreement protocols where
participants can agree on a common secret key in an insecure channel have
gained significant importance. Starting with Diffie-Hellman [8], where two parties
can agree on a secret key, several protocols have been developed which enable
multiple parties to agree on a common key [15,16]. However, such protocols were
mostly designed for the static groups, where the members of the group do not
change until the end of communication session. Therefore, if the members in
the group change, the entire protocol should be executed from the beginning
for all participants in the group. On the other hand, some protocols provide
additional functionalities to handle the re-execution overhead. Such protocols
are called Dynamic Group Key Agreement (DGKA) protocols [10, 12–14, 27].
Although DGKA protocols are more efficient compared to static ones, there
exist some other several factors which affect their performance – the first one
is the way of broadcasting key agreement parameters and the second being the
validation of participant identities via verification of received parameters. To
perform better in parameter distribution and verification stages, cluster-based
approaches [11,14,18] and tree-based methods [10,17] have been proposed in the
literature.

As a decentralized computing platform, blockchain technology has recently
emerged starting with Bitcoin [21] as a monetary system based on cryptocur-
rency. The technology is later decoupled from cryptocurrencies and transformed
into a wider domain with the concept of Distributed Ledger Technology (DLT)
such as in Hyperledger Fabric (HF) [28]. Essentially, HF is a generic decen-
tralized application development platform where transactions history is shared
among peers as computation nodes in the network. DLT allows decentralization,
greater transparency and easier auditability in a distributed setting.

In our work, we propose a dynamic group key agreement protocol called B-
GKAP which is an improved version of KAP-PBC [13] protocol and integrates
the HF platform to improve key computation performance while keeping im-
portant security properties of known DGKA protocols. The main rationale for
using the blockchain technology is to offload computational burden in a trust-
worthy and distributed manner for resource-constrained environments. The HF
provides capabilities, e.g., as Fabric Channels, of a permission-based blockchain
platform to realize this extension in an efficient and secure way. The relevant
benefits of our implemented approach are shown with the complexity analysis
carried out for different aspects such as communication and computation in our
experiments.

Our main contributions in this work are as follows:

1. To reduce the number of parameter transmissions in the protocol, DGKA
participants communicate with the blockchain network instead of communi-
cating with each other in our proposal. In this way, the amount of network
transmissions is decreased significantly.

2. We employ a blockchain application in HF to perform verification of group
key agreement parameters. Therefore, instead of each participant performing
verification of every other participant, we migrate those operations to the
blockchain network. Our performance evaluation show that B-GKAP pro-
vides better results in terms of scalabaility when compared to conventional
DGKA protocols.

3. We propose a detailed security analysis for B-GKAP by considering the
the well-known security attacks and properties. Our analysis show that B-
GKAP achieves the same level of security with the existing DGKA protocols.
Furthermore, we extend our analysis for the use of blockchain network in
group key computation based on the honest-but-curious security model.

The outline of this paper is as follows: in Section 3, we discuss the group key
agreement solutions and blockchain platforms in the technical domain. Section 4
explains our proposed model B-GKAP in terms of its system model, protocol
flow and functions. Then, in Section 5, we prove that our protocol has the same
security features with known group key agreement protocols. In Section 6, we
discuss performance of our model in terms of communication cost and com-
putational cost complexities analysis and simulation results. Finally, Section 8
summarizes our findings in this study, followed by a discussion of potential future
work.

2 Preliminaries

In this section, we introduce general definitions and the security model of B-
GKAP.

2.1 General Definitions

This section introduces the general definitions of B-GKAP based on [13].

Definition 1. Participants:

– Each participant is an entity and is represented as Ui.
– Each participant Ui who fully follows the protocol is called as “honest partic-

ipant”.
– The participant list is represented as U = 〈U1, U2, . . . , UN+M 〉 which consist

of two subgroups, network participants as |Unet| = M , and group participants
as |Ugrp| = N .

U = Ugrp ∪ Unet

– The participant group Ugrp is circular so that UN+i = Ui for some positive
1 6 i 6 N . The order of the participants is known by each participant.

Definition 2. Public Parameters: B-GKAP uses the following public parameters
based on the definitions in [13]:

– p = 2q + 1, where both p and q are large prime numbers.

– g is a generator for Gq = {i2|i ∈ Z∗p}, where Gq is a cyclic subgroup of quadratic
residues in Z∗p .

– T is the time-stamp against replay attack.

Definition 3. Long-term Public Private Key Pair: The protocol uses the fol-
lowing long-term key definitions based on [13]. Each entity in B-GKAP holds this key
pair.

– xi ∈ Z∗q is the private key and only the entity that holds the key knows it. This key
is never shared with other entities in the network.

– yi is the public key where yi = gxi mod p

Since our solution is based on KAP-PBC in [13], we assume that long-term public
keys of each participant are issued via a Certification Authority (CA). Before the
transmission, each variable is signed with long-term private key. Thus, during signature
verification stage, identities of the participants are authenticated.

Definition 4. Schnorr Signature Scheme: Based on the definition in [24], a mes-
sage M can be signed as e, s = SS(xi, yi,M) and the signature products e, s can be
verified using SV (yi, (e, s),M)

?
= True. In these equations, SS stands for ‘Schnorr

Sign’ and SV stands for ‘Schnorr Verify’.

Definition 5. Ledger Functions: Each network participant Ui in Unet maintains its
own blockchain ledger and has two functionalities called readLedger(·) and writeLedger(·).
A variable x can be written to the ledger via writeLedger(x), and read from the ledger
via x = readLedger().

2.2 Security Models

We consider malicious and honest-but-curious security models for the group partic-
ipants and the network participants of B-GKAP, respectively. We assume that the
potential entities for the malicious security model are as follows:

– Group participants: Participants that actively involve in the group key computa-
tion.

– B-GKAP users: Users that have valid certificates received from CA. They do not
need to participate every group key computation.

– Non-members: Standard Internet users without a valid certificate.

Based on the entity definitions above, a DGKA protocol should provide security against
the following threats: (i) violation of security properties (authentication, fault-tolerance
and forward secrecy), (ii) security attacks (impersonation, eavesdropping and replay at-
tacks) and (iii) secure dynamic group operations (backward and forward confidentiality
properties). We refer the reader to Section 5 for further details.

On the other hand, B-GKAP differs from conventional DGKA protocols by includ-
ing entities of HF into group key computation process. The main idea is to outsource
the verification overhead of temporary public keys and the exchanged secrets to the
HF network for achieving a more scalable DGKA protocol. Network participants are
powerful entities and they have access to all keying materials to compute the group
key; in fact, these participants are computationally bounded by the B-GKAP algorithm
and they cannot compute the group key. Therefore, we consider the honest-but-curious
security model for the network participants. Based on the definition in [23], we define
honest-but-curious adversary for B-GKAP as follows:

Definition (Honest-But-Curious (HBC) Adversary). The Honest-But-Curious
(HBC) adversary is a legitimate network participant in B-GKAP that tries to learn the
group key while honestly following the protocol [23].

3 Related Work and Technical Background

In this section, we overview the literature with respect to DGKA protocols and blockchain
technologies. Particularly, we elaborate on the HF1 platform which we have employed
as the blockchain platform to implement and evaluate our protocol.

3.1 GKA Protocols

Diffie-Hellman key exchange protocol [8] is the first group key agreement protocol that
is used for securing the communication among two parties using a common key com-
puted by these participants. Later, the concept of two-party secure communication was
extended by Ingamarsson et al. in [15] to multi-party setting. In addition, the proto-
col in [4] is also accepted as a pioneering work regarding the key agreement protocol
research with the proposed efficient group key computation. Nevertheless, these pro-
tocols were designed specifically for static groups, which means any change in the set
of communicating parties requires the re-execution of the group key agreement pro-
tocol for all communicating participants. In this work, our main focus is the dynamic
group key agreement (DGKA) protocols that use some auxiliary functions to update
the group key without re-executing the protocol from scratch for all participants as
elaborated in [7, 9, 10, 12–14,25]. These protocols have many application areas such as
conference communication [12], secure file sharing systems [13], and secure communi-
cation in Mobile Ad Hoc Networks (MANETs) [14]. Although the listed protocols have
proposed efficient group key computation approaches, novel solutions are necessary to
overcome the overhead of verification operations during group key computation while
dealing with large groups.

HF CA

HF
ORDERER

PEER

Ledger
Chaincode

H
F

EN
D

PO
IN

T

ADMIN HF
SDK

Init Req.

P-1 HF
SDK

P-2 HF
SDK

P-N HF
SDK

invoke & query

PEER

Ledger
Chaincode

(a) B-GKAP block diagram.

PEER

NP-1 NP-2

H
F

EN
D

PO
IN

T

P-1

P-2

P-N

COMMON HF COMPONENTS

NP-M

PEER

PEER

PEER

PEER

PEER

PEER

PEER

PEER

CHANNEL 1 CHANNEL 2 CHANNEL M

(b) B-GKAP model. (P: Group Participant
NP: Network Participant)

Fig. 1: B-GKAP block diagram and model.

1 https://www.hyperledger.org/projects/fabric

3.2 HF Platform

HF is a permissioned blockchain platform that only allows identified participants [1].
Thus, with the identification of the network modules, Byzantine Fault Tolerant (BFT)
[6] or Crash Fault Tolerant (CFT) [22] consensus protocols can be utilized. Another
important feature of HF is that most of the HF components are designed to be modu-
lar such as Membership Service Provider (MSP) and consensus protocol. This modular
design is made possible by its novel execute-order-validate architecture. In other appli-
cations [5,21], order-execute architecture is utilized where transactions are first ordered
via a consensus protocol, and then they are executed by all peers sequentially. On the
other hand, in HF, execution of the transactions is performed first to allow running
non-deterministic applications and the ordering phase is separated from the validation
step to isolate consensus logic from the peers. Therefore, the transactions can run in
parallel without the necessity to keep the order. After the consensus is provided by or-
dering state, the final state of the transaction can be applied by all nodes individually.
Therefore, in this work, our main motivation is to employ HF platform to perform nec-
essary verification operations for increasing the group key computation performance.

4 B-GKAP: Blockchain-based Group Key Agreement
Protocol

In this section, we introduce our Blockchain based Group Key Agreement Protocol
(B-GKAP) which is deployed on HF as a blockchain platform. In the first section, we
provide a system overview that explains the positioning of the HF components. Then,
we introduce B-GKAP in more details.

4.1 System Overview

B-GKAP is based on the Key Agreement Protocol with Partial Backward Confidential-
ity, namely KAP-PBC [13], but extends and improves its performance with HF plat-
form. Additionally, in B-GKAP, we migrate the communication among participants
to communication between participants and the network, which in return reduces the
communication cost during the group key computation in terms of the length of the
transmitted messages. Moreover, to verify the variables of the participants, we uti-
lize HF chaincodes. When a variable is received as an invoke request by the network,
the chaincode first performs the verification operation depending on the variable type.
Then if the verification succeeds, the chaincode approves the operation.

The overview of B-GKAP is shown in Fig. 1a, which consists of the following main
components:

1. B-GKAP participants are the entities which compute the group key.
2. B-GKAP admin sends initialization command to start up the HF platform and

setup initial variables as specified in Section 2.1. Both B-GKAP participants and
admin use HF Software Development Kit (SDK) which enables them to commu-
nicate with the network.

3. The peers are responsible for simulating incoming transactions by utilizing B-
GKAP chaincode. Additionally, each peer maintains a blockchain ledger and latest
ledger state. We have utilized HF ledger to store B-GKAP parameters.

4. HF Endpoint is a logical endpoint which can correspond peers or orderers, accord-
ing to the operation described in Section 3.2.

5. B-GKAP Chaincode handles all ledger read-write requests of the participants. The
chaincode performs all the necessary verification operations and, if the request is
valid, it produces read-write set.

6. HF Orderer performs the ordering of the produced transaction output sets as a
block of transactions and it disseminates to all HF peers. Then peers update their
ledger states.

7. HF CA maintains the identities of the HF components and B-GKAP participants.

4.2 B-GKAP Protocol

As shown in Fig. 2, first, each participant Ui ∈ U executes Public Key Distribution step
to distribute temporary public keys. Then, each network participant executes Public
Key Verification and Fault Correction steps to remove dishonest participants from the
group. Later on, remaining honest participants execute Public Key Query to fetch the
temporary public key of the next participant in the group. Once this step is completed,
each participant executes the Secret Key Distribution to send the secret keys to the
network participants. Afterward, network participants perform Secret Key Verification
and Fault Correction to exclude malicious participants from the group. Finally, each
participant performs Secret Key Query and Group Key Computation steps to compute
the common group key. Additionally, when a new participant joins the group or leaves
the group, Participant Join or Participant Leave steps can be executed.

As illustrated in Fig. 1b, there are network participants which are not involved in
the group key computation phase. Instead, they produce B-GKAP parameters except
for the secret key. Therefore, network participants can verify the temporary public and
secret keys of the participants who compute the group key. Each network participant
has multiple peers and an isolated ledger via HF channels. In this way, secret key
variables can be stored and validated separately by each network participant.

4.3 B-GKAP Protocol Steps

In this section, we give details of the protocol steps.

Public Key Distribution (sendPK(·)). Each participant Ui ∈ U executes the fol-
lowing to distribute temporary public keys. Group participants Uj ∈ Ugrp distribute
their temporary public keys to each network participant Ut ∈ Unet.

1: randomly select t ∈ Z∗q
2: ω = gtmodp
3: Sign ω: e, s = SS(x, y, ω)
4: Send the message M = {ω, e, s, T}

Public Key
Distribution Fault?Public Key

Verification Public Key Query Secret Key
Distribution

Secret Key
Verification

Secret Key
Query Fault?Group Key

ComputationJoin or Leave

Yes

No

No

Yes

START

STOP

Fig. 2: B-GKAP Flowchart

Public Key Verification (verifyPK(·)). Each network participant Uj ∈ Unet ex-
ecutes following to verify temporary public key of each group participant Ui ∈ Ugrp.
According to verification result, the key is written to the ledger of Uj .

1: for all Ui ∈ Ugrp do
2: Check the timestamp T
3: if SV (yi, (e1,i, s1,i), ωi) then
4: writeLedger(ωi)
5: end if
6: end for

Fault Correction (faultCorr(·)). Each network participant Uj ∈ Unet performs
following to remove any group participant Ui ∈ Ugrp whose verification of its temporary
public key or secret key fails.

1: for all Ui ∈ Ugrp do
2: if Ui is faulty then
3: Ui is removed from the participant group, U ′ = U − Ui

4: Execute participantLeave(·)
5: end if
6: end for

Public Key Query (queryPK(·)). In this step, each group participant Ui ∈ Ugrp,
requests for temporary public key of next group participant Ui+1 in the group from the
target network participant Uj ∈ Unet.

Uj performs the following:
1: ωi+1 = readLedger()
2: Sign temporary public key of Ui+1, ej , sj = SS(yj , xj , ωi+1)
3: Send message to Ui, M = (ωi+1, ej , sj , T)

Ui performs the following:
1: Receive the message M
2: Check timestamp T
3: Verify signature of Uj : SV (yj , (ej , sj), ωi+1))

Secret Key Distribution (sendSK(·)). Each group participant Ui ∈ Ugrp performs
following to generate and distribute secret key (CKi) to the target network participant
Uj ∈ Unet. The selection of Uj is determined in a way to ensure equal distribution of
secret keys.

1: Generate CKi: CKi = ωti
(i+1) mod p = gtiti+1 mod p

2: Randomly select an integer a ∈ Z∗q
3: k = (ωa

jmodp) mod q
4: Randomly select a line L(x), L(x) = xci + CKi mod q, ci = ga mod p
5: di = L(k) mod q
6: d′i = k ⊕ di
7: e2,i, s2,i = SS(xi, yi, CKi)
8: Send the message M = {s2,i, e2,i, ci, d′i, T}

Secret Key Verification (verifySK(·)). Each network participant Uj ∈ Unet per-
forms following to verify secret keys of group participants Ui ∈ Ugrp.

1: for all Ui ∈ Ugrp do
2: Receive message M = {s2,i, e2,i, ci, d′i, T}
3: Recover CKi and check T
4: k = (c

tj
i mod p) mod q

5: d = d′i ⊕ k
6: CKi = d− ci ∗ k mod q
7: Check the signature of Ui

8: if SV (yi, (e2,i, s2,i), CKi) then
9: writeLedger(CKi)
10: end if
11: end for

Secret Key Query (querySK(·)). After the fault correction step, each participant
Ui ∈ Ugrp performs following to query secret keys from each Uj ∈ Unet (CK1...N =
CK1||CK2|| . . . ||CKN).

Uj performs the following:
1: Randomly select an integer a ∈ Z∗q
2: cj = ga mod p
3: ki = (ωa

i modp)modq
4: for all Uk ∈ Ugrp − Ui do
5: Randomly select a line L(x) = xcj + CKk mod q
6: dk = L(ki) mod q
7: d′k = ki ⊕ dk
8: end for
9: Sign CK1...N : e2,j , s2,j = SS(xj , yj , CK1...N)
10: Send M = {s2,j , e2,j , cj , {d′1, d′2, . . . , d′N}, T}
Ui performs the following:
1: ki = (ctij mod p) mod q
2: for all Uk ∈ Ugrp − Ui do
3: dk = d′k ⊕ ki
4: CKk = dk − cj ∗ ki mod q
5: end for
6: Check timestamp T
7: Check the signature of Uj : SV (yj , (e2,j , s2,j), CK1...N)

Group Key Computation (compute(·)). Each group participant Ui ∈ Ugrp, com-
putes the group key.

1: for all Ui ∈ Ugrp do
2: CK = ((CK1CK2 · · ·CK|Ugrp|)modp)modq =

(gt1t2+t2t3+...+tn−1tn+tnt1modp)modq
3: end for

Participant Join (join(·)). Let Ui be the participant that wants to join the group
Ugrp = {U1, U2, ..., UN}. The join operations operates as follows:

1: if Ui ∈ {UN , UN+1, . . . , UN+K} then
2: Ui performs queryPK(·) and querySK(·)
3: Ui performs sendPK(·) function
4: Network participants perform faultCorr(·)
5: Ui−1 performs sendSK(·) function
6: Network participants perform faultCorr(·)
7: end if
8: for all Ui ∈ {U1, U2, . . . , UN+K} do
9: Ui performs querySKs(·) and groupKeyComputation(·) functions
10: end for

Participant Leave (leave(·)). Let Ui, Ui+1, ..., Ui+N be the set of leaving partic-
ipants and U ′grp be the group participants after the leave operation. Then, the leave
operation operates as follows:

1: if |Ugrp| − |U ′grp| < 2 then
2: The group key computation is terminated
3: end if
4: for each leaving participant Uj ∈ U ′grp do
5: non-leaving participant(s) Uj−1 ∈ Ugrp − U ′grp, performs sendPK(·)
6: Network participants perform faultCorr(·)
7: Uj−1 and Uj−2 ∈ Ugrp − U ′grp perform sendSK(·)
8: Network participants perform faultCorr(·)
9: end for
10: for all Ui ∈ Ugrp − U ′grp do
11: Ui performs querySK(·) and groupKeyComputation(·) functions
12: end for

5 Security Analysis

In this section, we provide a security analysis of B-GKAP. We consider the basic
security properties as well as potential attacks for group key agreement protocols for
our analysis.

5.1 Security Properties of GKA Protocols

In this section, we analyze B-GKAP with respect to the the basic security properties
of group key agreement protocols such as authentication, fault tolerance and forward
secrecy.
Authentication: This property is used for validating the identities of participants dur-
ing the execution of the protocol. In B-GKAP, as an initial authentication mechanism,
we assume that all participants are pre-identified with HF CA [28]. As a requirement
of interacting with HF Network, all participants have to use TLS v1.32 certificate to
provide identification. The TLS certificate is created by HF Admin prior to the network
initialization. For the second level of authentication mechanism, long-term key pairs of
the participants are used. All long-term public keys of the participants must be signed
by a trusted CA. During variable exchange between the participants and the network,

2 https://tools.ietf.org/html/rfc8446

all message payloads is signed with the long-term private key of the sender entity.
Eventually, receiving entity verifies the signature of the payload by sender’s long-term
public key using Schnorr’s signature [24].
Fault Tolerance: In the course of group key agreement processes, malicious partici-
pants should be immediately detected and removed from the group. In B-GKAP, detec-
tion and elimination of faulty participants occurs during the execution of verifyPK(·),
verifySK(·) and faultCorr(·) functions. If a malicious participant is detected in
verifyPK(·) or verifySK(·) functions, the key of the malicious participant is not
written to the ledger. Later, the faultCorr(·) function is used for removing this par-
ticipant from the group.
Forward Secrecy: This property is used for protecting the previous and subsequent
group keys against the compromise of long-term private keys of participants in the
group. Therefore, in B-GKAP, the long-term key pairs of participants are only used to
authenticate these participants. Additionally, each entity in B-GKAP generates a new
temporary public-private key pair using sendPK(·) function for each session. Thus,
B-GKAP provides the forward secrecy property.

5.2 Protection Against Security Attacks

In this section, we provide the security analysis of B-GKAP against impersonation,
eavesdropping and replay attacks.
Impersonation Attack: As mentioned in Section 2.2, the motivation of the imper-
sonation attack is to take place of any group participant during the protocol execution.
To do so, an attacker needs to be able to generate the signature of that entity. Since
B-GKAP uses the Schnorr signature scheme [24] as an authentication mechanism and,
as stated in [2] and [20], the Schnorr signature is secure against impersonation attacks,
B-GKAP also provides security against the impersonation attack.
Eavesdropping Attack: The goal of the eavesdropping attack in group key agreement
protocols is to capture the computed group key by eavesdropping the communication
channels among entities. In order to generate a group key, the attacker must obtain
secret keys (CKi) of all participants (CK1, . . . , CKN). In B-GKAP, entities exchange
secret keys in sendSK(·) and querySK(·) functions. In those functions, all secret key
values are extracted using c, d′ variables of the sender and temporary private key (t)
of the receiver. Since only the participants in the key agreement group U knows their
temporary private key (t), to compute k = (ctmodp) equation, attacker should try to
extract tj from ωj = gtjmodp for each participant Uj in U . Therefore, because solving
this equation is as hard as the discrete logarithm problem, B-GKAP is secure against
eavesdropping attack.
Replay Attack: During the communication between the B-GKAP entities, an attacker
might capture and re-transmit messages in the network to degrade the availability of
recipient parties such as in Distributed Denial-of-Service (DDoS) attack. Therefore, to
provide a protection against such attacks, we also append timestamp variable (T) into
the communication messages among participants during the execution of the protocol.

5.3 Security of Join and Leave Operations

Dynamic group operations enables group key agreement protocols to be more efficient
during re-generation of group keys. In order to overcome security weaknesses stated in

[19], a protocol must ensure forward and backward confidentiality properties. Forward
confidentiality property assures that further group keys cannot be computed by a par-
ticipant who has left the group. Conversely, backward confidentiality feature warrants
that previous group keys cannot be computed by recently joined participants. In the
following sections, we prove that Leave and Join operations in B-GKAP provide the
same security features as [13] assures.

Prior to applying dynamic group operations, let the participant group be Ugrp =
{U1, U2, U3, . . . , UN} and the group key be:

CK = ((gt1t2+...+ti−1ti+titi+1+...+tN t1)modp)modq)

Lemma 1. Under the difficulty of discrete logarithm problem, join operation does not
violate backward confidentiality.

Proof. The participant UN and joining participants should run join(·) algorithm. Let
the joining participants be U ′ = UN+1, UN+2, . . . , UN+k and the new group key be
CK′ = ((gt1t2+...+tN−1t

′
N+t′N tN+1+...+tN+kt1)modp)modq. We assume that any joining

participant with malicious intent has the previous message exchanged during the com-
putation of CK. In order to compute the previous group key, the malicious participant
should obtain tN from either using gtN−1tN or gtN t1 , which is as hard as solving the
discrete logarithm problem. Thus, B-GKAP provides backward confidentiality under
the difficulty of discrete logarithm problem.

Lemma 2. Under the difficulty of discrete logarithm problem, leave operation does not
violate forward confidentiality.

Proof. Let U ′ = Ui, Ui+1, Ui+2, . . . Ui+k be leaving participants where U ′ ⊆ U . As
given in function leave(·) (Section 2.1), when participants in U ′ leaves the group, the
group key is re-computed as CK′ = ((gt1t2+...+ti−2t

′
i−1+t′i−1ti+k+1...+tN t1)modp)modq.

If there exist some malicious participants in the leaving ones and they want to compute
the new group key CK′ using the old keying materials, they have to obtain t′i−1 by
either using gti−2t

′
i−1 or gt

′
i−1ti+k+1 . Since solving these equations is as hard as solving

the discrete logarithm problem, B-GKAP provides forward confidentiality property.

5.4 Security of B-GKAP Hyperledger Fabric Network

In B-GKAP, the network participants store all keying material exhanged by the group
participants. Such participants are involved in the execution of B-GKAP except for
the secret key generation and key computation steps. During the network initialization
step, (sendPK(·)), each network participant Um network entities generate temporary
public-private key pair (tm, ωm). Participants use these public keys to encrypt their
secret keys before the submission. Thus, the network can unveil the secret keys of the
participants using its temporary private key (tm). Additionally, the network partici-
pants also holds its own long-term key pair (xm, ym). These keys are used for signing
the protocol variables that are sent to the participants. Hence, participants ensure that
they are receiving variables from a trusted entity. Moreover, the secret key verification
is distributed among the network entities. Since the ledger of each entity is isolated via
the Fabric channels, the secret keys of the participants are also isolated3. Therefore, as

3 https://developer.ibm.com/tutorials/cl-blockchain-private-confidential-
transactions-hyperledger-fabric-zero-knowledge-proof/

described in Section 2.2, we consider the honest-but-curious security model for network
participants. Although they have the keying material to compute the group key, all the
network entities should work cooperatively to compute the key.

Furthermore, HF platform provides storage immutability via blockchain ledgers.
The ledger is distributed among peers, and to change the ledger data, a subset of peers
needs to generate the same output. This feature is forced by endorsement policies.
Finally, our design guarantees that even if a peer is compromised or failed, the system
remains operational.

In B-GKAP protocol, prior to secret key distribution, identities of network par-
ticipants are verified via Uj ∈ Unetwork, SV (yj , e2,j , s2,j , ωj) 6= false, and secret key
CKi of each participant Ui ∈ Ugrp is encrypted via temporary public key ωj of the
network participant Uj ∈ Unet. Thus, network participants can only receive intended
parameters which are ωi, si, ei, d

′
i, ci for Ui ∈ Ugrp. Moreover, in HF, the only way to

interact with the ledger is via Fabric chaincodes. Because implemented chaincode has
defined a set of functionality and is shared among the peers, the network has no other
choice but to follow the B-GKAP protocol. Given these properties, B-GKAP fits the
HBC adversary model.

6 Performance Analysis

In this section, communication cost and computational cost complexity of B-GKAP are
analyzed and simulation results are presented. During our analysis, we only consider
the participants which compute the group key. All simulations were carried out with
a machine of Intel Core Broadwell Processor (2.5GHz x 8 cores), L1 Cache 32KB, L2
Cache 4MB, L3 Cache 16MB, and 32GB RAM. We have used Docker Engine v18.06.1-
ce-mac734, and Hyperledger Fabric v1.4.35. For both B-GKAP chaincode and B-GKAP
participant implementations, we have used Go programming language v1.13.36. More-
over, we have utilized the same environment for the implementation of other protocols
for performance comparison.

Table 1: Transmission length of each B-GKAP function in bits.

Function Transmission length

sendPK(·) (2q + p)

queryPK(·) (2q + p)

sendSK(·) (3q + p)

querySK(·) (N + 1)q + p

6.1 Communication Cost Complexity Ct

B-GKAP Functions: In B-GKAP, variable transmission occurs between participants
(Ui ∈ Ugrp) and network participants (Uj ∈ Unet). Since all transmitted variables are
modular base of p and q, length of a variable is equal to its modular base. Table 1
indicates network transmission length of each function in B-GKAP.

4 https://docs.docker.com/engine/
5 https://hyperledger-fabric.readthedocs.io/
6 https://golang.org/project/

Table 2: Computational and communication complexities for N participants.

Protocol Cc × Texp Ct

Protocol in [10] ≤ O(log3 N) -
Protocol in [26] O(N) (N + 2)|q|+ 4|p|
Protocol in [12] O(N) (N + 2)|q|+ 4|p|

GKAP-MANET [14] O(N) 2|q|+ 5|p|
KAP-PBC [13] O(N) (N + 4)|q|+ 2|p|

B-GKAP O(1) 5|q|+ 2|p|

Key Computation: During key computation, several variable transmissions between
participants and the network occur. For each participant Ui ∈ Ugrp, network transmis-
sions are performed in sendPK(·) and sendSK(·) functions. In total, for the number
of network participants M , |(2M+3)q+(M+1)p| bits are transmitted for each DGKA
participant. Therefore communication complexity of key computation is Ct = O(M).
Join Operation: For the join operation, when K participants join the group, K + 1
participants perform network transmission in sendPK(·) function, and K + 2 partici-
pants perform network transmission in sendSK(·). In total, for K joining participants,
|(2M(K + 1) + 3K + 6)q + (M +K + 2)p| bits are transmitted.
Leave Operation: In the leave operation, for the leaving participant Ui, participant
Ui−1 executes sendPK(·). Moreover, participants Ui−1 and Ui−2 execute sendSK(·).
Therefore, |(2M + 6)q + (M + 2)p| bits are transmitted.

6.2 Computational Cost Complexity Cc

In computational cost analysis, we consider modular exponential operations as the
principal factor while calculating our results. The time cost of these operations can be
stated as Texp = O(xy mod z). In B-GKAP, participants Ui ∈ Ugrp performs verifica-
tion for only network participants Uj ∈ Unet. If we consider that M is negligible against
the participant count N , the computational cost complexity of group key computation,
join and leave operations is Cc = O(1)Texp.

7 Discussion on the Performance of B-GKAP

In this section, we compare the communication cost and computational cost complex-
ities of B-GKAP with the well-known GKA protocols by considering the the total
computational and communication costs of a single participant as the benchmark.

Comparison for the computational and communications costs of B-GKAP with
other well-known dynamic group key agreement protocols [10, 12–14, 26] is given in
Table 2. For instance, GKAP-MANET protocol relies on the most efficient group key
proposed by Burmester and Desmedt (BD) in [4]. BD protocol have many other variants
that improves the security of the original work against active attacks while achieving
a constant round of communication and less computational overhead as introduced
in Katz-Yung protocol [16]. However, such static protocols are computationally more
expensive than the dynamic ones. Therefore, we only compare B-GKAP with other
dynamic group key agreement protocols.

As shown in Table 2, B-GKAP is more efficient than most of the protocols regard-
ing the communication and computational complexities for each participant. In terms
of total communication complexity, the other protocols perform network transmission
to every other participant in the key agreement group. On the other hand, B-GKAP
participants only transmit messages to a limited number of network participants. More-
over, in B-GKAP, participants only perform verification for the network participants
instead of performing verification for incoming parameters from other participants.
As a cost of utilizing HF SDK, the lightweight client code in a B-GKAP participant
needs to establish several connections to a limited number of HF peers and orderers for
data transmissions, which is a slight additional overhead compared to the mentioned
protocols. Moreover, this number becomes more negligible when the number of par-
ticipants increases. Given these reasons, the overhead for participants in B-GKAP is
significantly lower than counterparts. Due to these complexity advantages compared
to other protocols, B-GKAP can be a good candidate for resource-constrained devices.

As a case study, we further investigate B-GKAP performance and compare it to
KAP-PBC counterpart as a baseline scheme. Fig. 3 depicts the group key computation
performance of KAP-PBC and B-GKAP for N group participants. As the orderer
parameters, we set batch size as N/M for B-GKAP where M is number of network
participants and batch timeout as five seconds. Since the solution is designed for several
network participants such as large organizations, this simulation is performed with
one and two network participants, which are represented as B-GKAP and B-GKAP+

respectively. Additionally, each network participant maintains two HF peers.

Fig. 3: B-GKAP and conventional model comparison.

The results show that, group key computation time of the conventional method
increases exponentially as the participant count increases. In contrary, group key com-
putation of B-GKAP increases linearly. First, the communication cost complexity of
KAP-PBC is O(N2) whereas in B-GKAP, the communication cost complexity is O(N).
For the computational cost complexity, B-GKAP outperforms KAP-PBC with its con-
stant computational cost O(1). The reason of slight performance difference between
B-GKAP and B-GKAP+ is that in B-GKAP+, the orderer needs to process submit-
ted public variables in two transaction blocks. Moreover, in our simulations, we set
batch size as the HF network can process without an issue. For more participants, the
network should process the transactions for multiple batches, which would affect the
performance slightly.

8 Conclusion

In this study, we present B-GKAP which employs Hyperledger Fabric (HF) blockchain
platform to partially offload the group key computation and thus alleviate the per-
formance burden for resource-constrained environments. Our approach is specifically
geared towards non-real-time scenarios such as ad hoc data sharing or group com-
munications considering potential latency due to blockchain operations, albeit being
minimal. With our protocol, the computation overhead of the group key agreement
participants is decreased significantly by migrating the verification of the distributed
parameters to the network participants. Thus, participants with low computation power
and energy resource can conveniently adopt our GKA protocol. Additionally, we have
reduced the number of network transmissions for group key computation, leave and
join operations. Hence, for network environments such as IoT where participant group
changes frequently, our solution provides more efficient dynamic operations. Further-
more, we have distributed secret keys of the participants among the network partici-
pants via Fabric Channels. In this way, malicious network participants cannot generate
group keys without colluding.

HF platform provides immutable storage property for stored variables via blockchain
ledger. Additionally, in HF, not only valid but also invalid transactions are stored in
the ledger. This feature makes our system auditable for deeper investigations. Another
important feature of HF is its modularity. For instance, its consensus protocol can
be replaced with more efficient methods as a future work. Moreover, with its modular
membership service provider, various authentication schemes can be utilized depending
on the usage area of the protocol.

Furthermore, to overcome the problem of colluding network participants, Fabric
chaincode runtime environment, and ledger storage can be transferred to a Trusted
Execution Environment (TEE) [3]. Consequently, even the network participants cannot
access to secret keys of the participants.

References

1. Hyperledger Fabric, https://www.hyperledger.org/projects/fabric, accessed: 2019-
09-30

2. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.) Ad-
vances in Cryptology — CRYPTO 2002. pp. 162–177. Springer Berlin Heidelberg,
Berlin, Heidelberg (2002)

3. Brandenburger, M., Cachin, C., Kapitza, R., Sorniotti, A.: Blockchain and trusted
computing: Problems, pitfalls, and a solution for hyperledger fabric. arXiv e-prints
arXiv:1805.08541 (May 2018)

4. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution sys-
tem. In: Workshop on the Theory and Application of of Cryptographic Techniques.
pp. 275–286. Springer (1994)

5. Buterin, V.: A next-generation smart contract and decentralized application plat-
forme, https://github.com/ethereum/wiki/wiki/White-Paper

6. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

7. Chuang, Y.H., Tseng, Y.M.: An efficient dynamic group key agreement protocol
for imbalanced wireless networks. Int. J. of Net. Man. 20, 167–180 (2010)

8. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Transactions on Information Theory 22, 644 – 654 (12 1976).
https://doi.org/10.1109/TIT.1976.1055638

9. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou, J.,
Lopez, J., Deng, R.H., Bao, F. (eds.) Information Security (2005)

10. Dutta, R., Barua, R.: Dynamic group key agreement in tree-based setting. In:
Boyd, C., González Nieto, J.M. (eds.) Information Security and Privacy. pp. 101–
112. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

11. Dutta, R., Dowling, T.: Secure and efficient group key agreements for cluster
based networks. Transactions on Computational Science 4, 87–116 (01 2009).
https://doi.org/10.1007/978-3-642-01004-0_6

12. Ermiş, O., Bahtiyar, Ş., Anarim, E., Çağlayan, U.: An improved conference-key
agreement protocol for dynamic groups with efficient fault correction. Security
and Communication Networks 8, 1347–1359 (05 2015)

13. Ermiş, O., Bahtiyar, Ş., Anarim, E., Çağlayan, U.: A key agreement protocol with
partial backward confidentiality. Computer Networks 129, 159–177 (2017)

14. Ermiş, O., Bahtiyar, Ş., Anarim, E., Çağlayan, U.: A secure and efficient group key
agreement approach for mobile ad hoc networks. Ad Hoc Netw. 67, 24–39 (2017)

15. Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE
Transactions on Information Theory 28, 714–719 (1982)

16. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. Jour-
nal of Cryptology 20(1), 85–113 (2007)

17. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Transac-
tions on Information and System Security 7, 60–96 (02 2004)

18. Konstantinou, E.: Cluster-based group key agreement for wireless ad hoc networks.
In: 2008 Third International Conference on Availability, Reliability and Security.
pp. 550–557 (March 2008). https://doi.org/10.1109/ARES.2008.106

19. Lee, S., Kim, J., Hong, S.: Security weakness of Tseng’s fault-tolerant conference
key agreement protocol. Journal of Systems and Software 82, 1163–1167 (2009)

20. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the Schnorr signature scheme and dsa against related-key attacks. In: Kwon,
S., Yun, A. (eds.) Information Security and Cryptology - ICISC 2015. pp. 20–35.
Springer International Publishing, Cham (2016)

21. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep., Manubot
(2008)

22. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (ATC). pp. 305–319 (2014)

23. Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. Uni. of Oxford, Tech. Rep (2014)

24. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings (1990)

25. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)

26. Tseng, Y.M.: An improved conference-key agreement protocol with forward secrecy.
Informatica, Lith. Acad. Sci. 16, 275–284 (01 2005)

27. Tseng, Y.M.: A communication-efficient and fault-tolerant conference-key agree-
ment protocol with forward secrecy. J Syst. Software 80, 1091–1101 (07 2007)

28. Vukolić, M.: Hyperledger fabric: towards scalable blockchain for business. Tech.
rep., Tech. rep. Trust in Digital Life 2016. IBM Research, 2016. (2015)

