Skip to main content

Tissue Differentiation Based on Classification of Morphometric Features of Nuclei

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2020)

Abstract

The aim of the article is to analyze the shape of nuclei of various tissues and to assess the tumor differentiation based on morphometric measurements. For this purpose, an experiment was conducted, the results of which determine whether it is possible to determine a tissue’s type based on the mentioned features. The measurements were performed on a publicly available data set containing 1,356 hematoxylin- and eosin-stained images with nucleus segmentations for 14 different human tissues. Morphometric analysis of cell nuclei using ImageJ software took 17 parameters into account. Classification of the obtained results was performed in Matlab R2018b software using the SVM and t-SNE algorithms, which showed that some cancers can be distinguished with an accuracy close to 90% (lung squamous cell cancer vs others; breast cancer vs cervical cancer).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araújo, T.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6), e0177544 (2017)

    Google Scholar 

  2. Arena, E.T., Rueden, C.T., Hiner, M.C., Wang, S., Yuan, M., Eliceiri, K.W.: Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdiscipl. Rev. Dev. Biol. 6(2), e260 (2017)

    Google Scholar 

  3. Chang, H., Borowsky, A., Spellman, P., Parvin, B.: Classification of tumor histology via morphometric context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2210 (2013)

    Google Scholar 

  4. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Google Scholar 

  5. Collins, T.J.: ImageJ for microscopy. Biotechniques 43(S1), S25–S30 (2007)

    MathSciNet  Google Scholar 

  6. Demir, C., Yener, B.: Automated cancer diagnosis based on histopathological images: a systematic survey. Technical report, Rensselaer Polytechnic Institute (2005)

    Google Scholar 

  7. Han, J.W., Breckon, T.P., Randell, D.A., Landini, G.: The application of support vector machine classification to detect cell nuclei for automated microscopy. Mach. Vis. Appl. 23(1), 15–24 (2012)

    Google Scholar 

  8. Hou, L., et al.: Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of 10 cancer types. Can. Imaging Arch. (2019). https://doi.org/10.7937/tcia.2019.4a4dkp9u

    Article  Google Scholar 

  9. Huang, P.W., Lai, Y.H.: Effective segmentation and classification for HCC biopsy images. Pattern Recogn. 43(4), 1550–1563 (2010)

    Google Scholar 

  10. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2013)

    Google Scholar 

  11. Jaworek-Korjakowska, J., Kłeczek, P.: Automatic classification of specific melanocytic lesions using artificial intelligence. BioMed Res. Int. (2016). article ID 8934242 https://doi.org/10.1155/2016/8934242

  12. Jeleń, Ł., Krzyżak, A., Fevens, T.: Comparison of pleomorphic and structural features used for breast cancer malignancy classification. In: Bergler, S. (ed.) AI 2008. LNCS (LNAI), vol. 5032, pp. 138–149. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68825-9_14

    Chapter  Google Scholar 

  13. Ji, M.Y., et al.: Nuclear shape, architecture and orientation features from h&e images are able to predict recurrence in node-negative gastric adenocarcinoma. J. Transl. Med. 17(1), 92 (2019)

    Google Scholar 

  14. Kalinin, A.A., et al.: 3D cell nuclear morphology: microscopy imaging dataset and voxel-based morphometry classification results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2272–2280 (2018)

    Google Scholar 

  15. Kaucha, D.P., Prasad, P., Alsadoon, A., Elchouemi, A., Sreedharan, S.: Early detection of lung cancer using SVM classifier in biomedical image processing. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 3143–3148. IEEE (2017)

    Google Scholar 

  16. Kowal, M., Skobel, M., Nowicki, N.: The feature selection problem in computer-assisted cytology. Int. J. Appl. Math. Comput. Sci. 28(4), 759–770 (2018)

    MathSciNet  Google Scholar 

  17. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  18. Pang, S., Du, A., Orgun, M.A., Yu, Z.: A novel fused convolutional neural network for biomedical image classification. Med. Biol. Eng. Comput. 57(1), 107–121 (2019)

    Google Scholar 

  19. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Google Scholar 

  20. Swiderska-Chadaj, Z., et al.: A deep learning approach to assess the predominant tumor growth pattern in whole-slide images of lung adenocarcinoma. In: Medical Imaging 2020: Digital Pathology, vol. 11320, p. 113200D. International Society for Optics and Photonics (2020)

    Google Scholar 

  21. Vertemati, M., et al.: Morphometric analysis of hepatocellular nodular lesions in HCV cirrhosis. Pathol. Res. Pract. 208(4), 240–244 (2012)

    Google Scholar 

  22. Wienert, S., et al.: Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci. Rep. 2, 503 (2012)

    Google Scholar 

  23. Wu, B., Nebylitsa, S.V., Mukherjee, S., Jain, M.: Quantitative diagnosis of bladder cancer by morphometric analysis of HE images. In: Photonic Therapeutics and Diagnostics XI, vol. 9303, p. 930317. International Society for Optics and Photonics (2015)

    Google Scholar 

  24. Yamashita, Y., Ichihara, S., Moritani, S., Yoon, H.S., Yamaguchi, M.: Does flat epithelial atypia have rounder nuclei than columnar cell change/hyperplasia? a morphometric approach to columnar cell lesions of the breast. Virchows Arch. 468(6), 663–673 (2016)

    Google Scholar 

Download references

Acknowledgement

This publication was funded by AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering under grant number 16.16.120.773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Piórkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudzińska, D., Piórkowski, A. (2020). Tissue Differentiation Based on Classification of Morphometric Features of Nuclei. In: Florez, H., Misra, S. (eds) Applied Informatics. ICAI 2020. Communications in Computer and Information Science, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-61702-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61702-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61701-1

  • Online ISBN: 978-3-030-61702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics