Skip to main content

Temperature Sensing in Hyperthermia Study in Breast Cancer Treatment Using Optical Fiber Bragg Gratings

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1277))

Abstract

This paper presents the simulation results of an optoelectronics temperature monitoring system intended to be used in a hyperthermia breast-cancer treatment. This treatment involves the use of electromagnetic fields in order to generate a concentrated heat pattern around tissues affected by cancer. Therefore, all-optical fiber sensors which are immune to electromagnetic signals should be used to determine the relationship between the applied electromagnetic power density and the actual temperature in the modeled tissue. The proposed optoelectronic system is an electro-optic dual-comb fiber Bragg grating interrogation system, which uses a simple architecture with a continuous wave laser and a Mach-Zehnder modulator at an specific bias voltage to generate additional modes around the central wavelength of the laser. The photo-detected response of the sensor at the modulation frequency makes it possible to read the changes in the sensor’s Bragg wavelength. In the simulation study, the modulation frequency of the Mach-Zehnder modulator was swept in order to find the best configuration in terms of amplitude temperature resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bonilla-Manrique, O.E., Garcia-Souto, J.A., Martin-Mateos, P., Jerez-Gonzalez, B., Acedo, P.: Fast interrogation of fiber Bragg grating sensors using electro-optic dual optical frequency combs. In: International Conference on Optical Fibre Sensors (OFS24), vol. 9634, 963422 (2015). https://doi.org/10.1117/12.2195288, http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2441947

  2. Bosiljevac, M., Komljenovic, T., Babic, D., Sipus, Z.: Interrogating FBG based temperature sensors; Practical issues. In: ELMAR, 2012 Proceedings, pp. 305–308 (2012)

    Google Scholar 

  3. Chalakur-Ramireddy, N.K., Pakala, S.B.: Combined drug therapeutic strategies for the effective treatment of triple negative breast cancer. Biosci. Rep. 38(1) (2018). https://doi.org/10.1042/bsr20171357

  4. Cheng, R., Xia, L.: Interrogation of weak Bragg grating sensors based ondual-wavelength differential detection. Opt. Lett. 41(22), 5254 (2016). https://doi.org/10.1364/OL.41.005254. https://www.osapublishing.org/abstract.cfm?URI=ol-41-22-5254

    Article  Google Scholar 

  5. Clement, J., Torregrosa, G., Maestre, H., Fernández-Pousa, C.R.: Remote picometer fiber Bragg grating demodulation using a dual-wavelength source. Appl. Opt. 55(23), 6523–6529 (2016)

    Article  Google Scholar 

  6. Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy. Optica 3(4), 414 (2016). https://doi.org/10.1364/OPTICA.3.000414. https://www.osapublishing.org/abstract.cfm?URI=optica-3-4-414

    Article  Google Scholar 

  7. Crezee, J.: SP-0299: technical aspects of hyperthermia: present and future. Radiother. Oncol. 115, S151 (2015). https://doi.org/10.1016/s0167-8140(15)40297-x

    Article  Google Scholar 

  8. Datta, N., et al.: Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat. Rev. 41(9), 742–753 (2015). https://doi.org/10.1016/j.ctrv.2015.05.009

    Article  Google Scholar 

  9. Dutta, J., Kundu, B.: Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. J. Therm. Biol. 71, 41–51 (2018). https://doi.org/10.1016/j.jtherbio.2017.10.012

    Article  Google Scholar 

  10. Guarnizo Mendez, H.F., Polochè Arango, M.A., Coronel Rico, J.F., Rubiano Suazo, T.A.: Hyperthermia study in breast cancer treatment using a new applicator. In: Florez, H., Leon, M., Diaz-Nafria, J.M., Belli, S. (eds.) ICAI 2019. CCIS, vol. 1051, pp. 215–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32475-9_16

    Chapter  Google Scholar 

  11. Hadi, F., et al.: Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J. Cell. Physiol. 234(11), 20028–20035 (2019). https://doi.org/10.1002/jcp.28599

    Article  Google Scholar 

  12. Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S.: Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647–649 (1978). https://doi.org/10.1063/1.89881. http://scitation.aip.org/content/aip/journal/apl/32/10/10.1063/1.89881

    Article  Google Scholar 

  13. IARC, G.: Cifras y estimaciones de cáncer en el mundo. Web, September 2018. https://www.cancer.gov.co/sites/default/files/boletin-prensa/archivo/boletin_globocan.pdf

  14. Iero, D.A.M., Crocco, L., Isernia, T., Korkmaz, E.: Optimal focused electromagnetic hyperthermia treatment of breast cancer. In: 2016 10th European Conference on Antennas and Propagation (EuCAP). IEEE (2016). https://doi.org/10.1109/eucap.2016.7481515

  15. Kersey, A., et al.: Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997). https://doi.org/10.1109/50.618377

    Article  Google Scholar 

  16. Kheirolomoom, A., et al.: Combining activatable nanodelivery with immunotherapy in a murine breast cancer model. J. Controlled Release 303, 42–54 (2019). https://doi.org/10.1016/j.jconrel.2019.04.008

    Article  Google Scholar 

  17. Korkmaz, E., Isık, O., Sagkol, H.: A directive antenna array applicator for focused electromagnetic hyperthermia treatment of breast cancer, pp. 1–4. Lisbon (2015)

    Google Scholar 

  18. Kuse, N., Ozawa, A., Kobayashi, Y.: Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy. Opt. Express 21(9), 11141–11149 (2013). https://doi.org/10.1364/OE.21.011141. http://www.ncbi.nlm.nih.gov/pubmed/23669971

    Article  Google Scholar 

  19. Mallory, M., Gogineni, E., Jones, G.C., Greer, L., Simone, C.B.: Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol./Hematol. 97, 56–64 (2016). https://doi.org/10.1016/j.critrevonc.2015.08.003

    Article  Google Scholar 

  20. Martin-Mateos, P., Ruiz-Llata, M., Posada-Roman, J., Acedo, P.: Dual-comb architecture for fast spectroscopic measurements and spectral characterization. IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015). https://doi.org/10.1109/LPT.2015.2421276

    Article  Google Scholar 

  21. Naz, S., Shahzad, H., Ali, A., Zia, M.: Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment. Artif. Cells Nanomed. Biotechnol. 46(5), 899–916 (2017). https://doi.org/10.1080/21691401.2017.1375937

    Article  Google Scholar 

  22. Nguyen, P., Abbosh, A.: Focusing techniques in breast cancer treatment using non-invasive microwave hyperthermia, pp. 1–3. Hobart, TAS (2015)

    Google Scholar 

  23. Nikita, K.S.: Handbook of Biomedical Telemetry. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118893715

    Book  Google Scholar 

  24. Observatory, T.G.C.: Breast Cancer. Globocan 2018 (2018). https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf

  25. Porter, E., Fakhoury, J., Oprisor, R., Coates, M., Popović, M.: Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–5, Barcelona (2010)

    Google Scholar 

  26. Posada-Roman, J.E., Garcia-Souto, J.A., Poiana, D.A., Acedo, P.: Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs. Sensors 16(12) (2016). https://doi.org/10.3390/s16122007

  27. Posada-Roman, J.E., Poiana, D.A., Garcia-Souto, J.A., Acedo, P.: Interrogation of FBG sensors based on electro-optic dual optical frequency combs. In: Latin America Optics and Photonics Conference, pp. 2–4 (2016)

    Google Scholar 

  28. Singh, S., Sahu, B., Singh, S.P.: Conformal microstrip slot antenna with an AMC reflector for hyperthermia. J. Electromagn. Waves Appl. 30(12), 1603–1619 (2016). https://doi.org/10.1080/09205071.2016.1207568

    Article  Google Scholar 

  29. Singh, S., Singh, S.P.: Water-loaded metal diagonal horn applicator for hyperthermia. IET Microwaves Antennas Propag. 9, 814–821 (2015). https://doi.org/10.1049/iet-map.2014.0699

    Article  Google Scholar 

  30. Society, A.C.: Global Cancer Facts and Figures 4th Edition (2018). https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/global-cancer-facts-and-figures/global-cancer-facts-and-figures-4th-edition.pdf

  31. Zhou, J., Wang, G., Chen, Y., Wang, H., Hua, Y., Cai, Z.: Immunogenic cell death in cancer therapy: present and emerging inducers. J. Cell. Mol. Med. 23(8), 4854–4865 (2019). https://doi.org/10.1111/jcmm.14356

    Article  Google Scholar 

Download references

Acknowledgment

This research is partly financed by the government of Colombia through Minciencias call No. 844-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Triana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Triana, A., Cano, C.C., Guarnizo-Mendez, H.F., Poloche, M.A. (2020). Temperature Sensing in Hyperthermia Study in Breast Cancer Treatment Using Optical Fiber Bragg Gratings. In: Florez, H., Misra, S. (eds) Applied Informatics. ICAI 2020. Communications in Computer and Information Science, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-61702-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61702-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61701-1

  • Online ISBN: 978-3-030-61702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics