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Abstract. The aim of a clustering method is to create groups (clus-
ters) of objects that are similar to each other. This similarity is usually
measured by means of a distance, thus, the choice of distance function
plays a crucial role in the clustering process. In this work, we propose
a variant of the classical clustering method kmeans that combines the
information given by different distances to group the objects. More pre-
cisely, the cluster to which an object is assigned is chosen by applying
the Borda Count to the rankings of closest cluster centers induced by dif-
ferent distances. Experiments were carried out for 81 different datasets.
For the vast majority of these datasets, the clusters obtained with the
proposed method reduced the Total Distance Within Clusters (TDWC)
in comparison with the clusters obtained with the classical kmeans.
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1 Introduction

The task of grouping objects of a dataset into smaller subsets of objects based
on their similarity is broadly known as clustering. Clustering methods can be
divided into different families based on their strategy for creating the clusters [8].
One of these families is called partitional clustering [9], being kmeans [5]
the most prominent method of the family. This method is an iterative process
that, after an initial cluster allocation, iteratively recalculates the clusters by
reassigning the objects to the cluster whose center is the closest. Obviously, the
way in which the distance of the objects to the centers is calculated plays a big
role in the method of kmeans.

In this work, we present a variant of kmeans that reduces the influence of the
distance function by modifying the step in which objects are assigned to a clus-
ter. More precisely, the cluster to which an object is assigned is not calculated
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based on one sole distance function but, instead, by several distance functions
fixed beforehand. We bring to the attention the Borda Count social choice func-
tion [1], which has been used in the field of social choice theory for centuries,
as a tool that can combine the information given by all these distances. In this
way, the assignation step becomes more robust with regard to the choice of dis-
tance function. Experiments on several artificially generated datasets support
the claim.

The paper is organised as follows: in Section 2, the preliminary concepts
that are required for the understanding of this work are introduced (the Borda
Count, the definition of some prominent distances and the kmeans method). In
Section 3, the proposed method is introduced. The experiments performed to
test the method and the results are discussed in Section 4. To sum up, some
conclusions and future work are commented in Section 5.

2 Preliminaries

In this section, we recall some preliminary notions that will be essential to un-
derstand this work.

2.1 Borda Count

Let C = {c1, c2, . . . , ck} denote a set of candidates. A ranking on C is the strict
part of a total order relation on C . A list of rankings on C is called a profile
of rankings. A social choice function [10] is a function that assigns a non-
empty subset of C to any profile of rankings, being this subset understood as
the object(s) ranked overall at the best positions in the profile of rankings.

The Borda Count [1] is among the most prominent social choice functions.
For applying the Borda Count, each candidate is awarded one point every time
that it is ranked at a better position than another candidate and half a point
every time that it is tied at the same position as another candidate. All the points
obtained by a candidate over all rankings in the profile of rankings are added up
to obtain the so-called score of the candidate. Finally, the Borda Count outputs
the candidate(s) with the highest score.

Example 1. Consider the profile of four rankings on a set of six candidates given
in Table 1.

The Borda Count is applied to the profile of rankings in Table 1. Table 2
shows the points that each candidate receives in each of the rankings, and the
scores obtained by each candidate after adding these points. For instance, for the
ranking r1, candidate C is ranked at the worst position, so receives no points;
candidate E is only ranked at a better position than candidate C, so receives
one point; candidate B is only ranked at a better position than candidates E
and C, so receives two points; and so on. Notice what happens when two or
more candidates are tied. For instance, for the ranking r4, candidates A, D and
F are tied with each other and are ranked at a better position than the other
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Table 1. Profile of four rankings on a set of six candidates.

Ranking

r1 F � A � D � B � E � C

r2 F � A ∼ C ∼ D � B � E

r3 F � C � B � A ∼ E � D

r4 A ∼ D ∼ F � C � B ∼ E

three candidates. Therefore, four points are assigned to each of A, D and F .
This process is applied to all the rankings until each candidate obtains a final
score. Ultimately, candidates are ranked according to their scores, resulting in
the ranking F � A � D � C � B � E.

Table 2. Points for each candidate in each ranking of the profile of rankings in Table
1 applying the Borda Count.

Ranking A B C D E F

r1 4.0 2.0 0.0 3.0 1.0 5.0

r2 3.0 1.0 3.0 3.0 0.0 5.0

r3 1.5 3.0 4.0 0.0 1.5 5.0

r4 4.0 0.5 2.0 4.0 0.5 4.0

Total 12.5 6.5 9.0 10.0 3.0 19.0

Final ranking F � A � D � C � B � E

2.2 Distances

Ten prominent distances4 in the context of clustering have been selected based
on the comparative study presented in [7]. Formally, these ten distances are
defined, for any two objects v = (v1, . . . , vn) and w = (w1, . . . , wn), as follows.

Canberra distance:

dcan(v,w) =

n∑
i=1

|vi − wi|
|vi|+ |wi|

.

Chebyshev distance:
dche(v,w) = max

i
|vi − wi| .

4 It should be noted that not all the considered distance functions fulfill all axioms
normally required for a ‘metric’.
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Cosine distance:

dcos(v,w) = 1−
∑n

i=1 viwi√∑n
i=1 v

2
i

√∑n
i=1 w

2
i

.

Euclidean distance:

deuc(v,w) =

√√√√ n∑
i=1

(vi − wi)2 .

Jaccard distance:

djac(v,w) =

∑n
i=1 (vi − wi)

2∑n
i=1 v

2
i +

∑n
i=1 w

2
i −

∑n
i=1 viwi

.

Manhattan distance:

dman(v,w) =

n∑
i=1

|vi − wi| .

Matusita distance:

dmat(v,w) =

√√√√ n∑
i=1

(
√
vi −

√
wi)2 .

Max symmetric distance:

dmas(v,w) = max

(
n∑

i=1

(vi − wi)
2

vi
,

n∑
i=1

(vi − wi)
2

wi

)
.

Triangular discrimination distance:

dtrd(v,w) =

n∑
i=1

(vi − wi)
2

vi + wi
.

Vicissitude distance:

dvsd(v,w) =

n∑
i=1

(vi − wi)
2

max (vi, wi)
.

2.3 kmeans

Given m objects x1, . . . ,xm ∈ Rn (where n is the number of attributes), a
clustering method aims at partitioning {x1, . . . ,xm} into k groups (referred to
as clusters) such that objects in the same cluster are the most similar as possible
to each other and objects in different clusters are the most different as possible
to each other.

The quality of a partition is measured in many different ways, for instance,
in terms of the cohesion of the clusters that represents how similar all objects
within the clusters are. This cohesion is typically described in terms of the Total
Within Sum of Squares (TWSS) that sums the Within Sum of Squares (WSSj)
of all clusters {Cj}kj=1. Formally, the WSSj of a cluster Cj with center cj is
defined as

WSSj =
∑
xi∈Cj

n∑
`=1

(xi` − cj`)
2
,
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and the TWSS is defined as

TWSS =

k∑
j=1

WSSj =

k∑
j=1

∑
xi∈Cj

n∑
`=1

(xi` − cj`)
2
, (1)

where xi` and ck` respectively denote the `-th component of xi and cj with
` ∈ {1, . . . , n}.

As proposed by MacQueen in the original paper [5] on kmeans, the goal
is to identify the partition of {x1, . . . ,xm} into k clusters that minimizes the
TWSS. Unfortunately, finding such partition is a very difficult problem in case
m is moderately large. Therefore, an heuristic approach, referred to as kmeans,
is typically considered. There are many variants of kmeans, being the three
discussed in [6] the most prominent ones. We will focus on the one presented by
Lloyd [4].

The method works as follows. First, it is necessary to establish the number
k of clusters the dataset is going to be divided into. Next, k initial centers
must be selected. This task is usually done randomly but different approaches
have been presented through the years [2] making this field of research quite
popular. In this work, we follow the most classical approach and select the initial
centers randomly among the objects in the dataset. The method of kmeans then
consists of two main parts, the assignment phase and the update of the center.
After the initial centers have been selected, the assignment phase occurs and
the objects are assigned to the cluster represented by the closest center. When
all the objects have been assigned to a cluster, the center of each cluster is
recomputed as the centroid of all the points belonging to that cluster, meaning
by centroid the (componentwise) arithmetic mean of all the objects belonging
to that cluster. These steps are repeated until all the points are assigned to the
same cluster that in the previous iteration or a maximum number of iterations
established beforehand is attained. The pseudocode of this procedure is outlined
in Algorithm 1. The assignment phase is highlighted to ease the comparison with
the method presented later on in Section 3.

Note that it is assured that, in each iteration, a partition with a value of
TWSS smaller than that of the previous iteration is obtained. Unless the maxi-
mum number of iterations is reached, a local minimum of the TWSS is obtained
by kmeans. It is common to run the method several times with different ini-
tialisations aiming at finding the closest solution to a global minimum of the
TWSS.
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Algorithm 1: Lloyd

Select k random objects from the dataset as initial centers of the clusters;
for iter to max iter do

foreach xi ∈ objects do
foreach cj ∈ centers do

if d(xi, cj) ≤ d(xi, current cluster) then
modify current cluster to cj ;

end

end

end

foreach C ∈ clusters do
update center to centroid of objects in C;

end
if none of the points change of cluster then

break;
end

3 The proposed method

The TWSS used for measuring the cohesion of the clusters is inherently linked
to the Euclidean distance, as can be seen when rewriting Eq. (1) as

TWSS =

k∑
j=1

∑
xi∈Cj

deuc (xi − cj)
2
. (2)

Unfortunately, the Euclidean distance might not be the distance that best fits the
given dataset. The goal should then be to minimize the Total Distance Within
Clusters (TDWC), defined as follows

TDWCd =

k∑
j=1

∑
xi∈Cj

d (xi − cj)
2
, (3)

where d does not need to be the Euclidean distance and could possibly be un-
known.

In order to achieve this purpose, we focus on modifying the assignment phase
of Lloyd’s original algorithm [4] (highlighted in Algorithm 1). As mentioned
before, in Lloyd’s algorithm the object is assigned to the cluster with the closest
center, thus, this assignment relies completely on the considered distance. To
overcome this problem, we present an approach that combines different distances
for identifying the closest centers. Because the values given by different distances
typically are not specified in the same order of magnitude, it is not possible to
compare the distances between objects directly. Instead, the ordinal information
associated with these distances may be used for defining a ranking of closest
centers.
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In order to apply the method, the number of clusters k and the set D of dis-
tances must be previously defined. The proposed method is applied by following
these steps:

1. Select k different random objects as centers;
2. For object xi, center cj and distance d`, compute d`(xi, cj);
3. Obtain the ranking %i,` of the centers cj by increasing value of {d`(xi, cj)}kj=1;
4. Repeat Steps 2 and 3 for the n different distances in D = {d1, . . . , dn};
5. Apply the Borda Count to the rankings {%i,`}n`=1 to obtain the winner c as

the closest center;
6. The object xi is assigned to the cluster whose center c was obtained as the

closest in Step 6;
7. Update the center cj of each cluster Cj ;
8. Repeat Steps 2 to 7 until none of the objects change of cluster or a max

number of iterations is reached.

Algorithm 2 presents the pseudocode of this method. The highlighted box
corresponds to the assignment phase, which represents the only change with
respect to the original Lloyd’s algorithm described in Section 2.

Algorithm 2: The proposed method

Select k random objects from the dataset as initial centers of the
clusters;
for iter to max iter do

foreach xi ∈ objects do
initialize empty profile of rankings Ri;
foreach d` ∈ distances do

foreach cj ∈ centers do
compute d`(xi, cj);

rank centers according to increasing value of {d`(xi, cj)};
insert ranking into Ri;

modify current cluster to borda count(Ri);

foreach Cj ∈ clusters do
update center to centroid of objects in Cj ;

if none of the points change of cluster then
break;
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4 Experimental results

4.1 Evolution of the TDWC

It is known that classical kmeans guarantees that the TDWC associated with the
Euclidean distance (i.e., the TWSS) decreases in each iteration. Unfortunately,
this might no longer (and typically will not) be the case for the TDWC associated
with a different distance.

In this section, we will analyse how the proposed method behaves with regard
to the TDWC associated with all the distances presented in Section 2.2. In order
to compare the proposed method and the classical kmeans, the latter has been
performed 10 times, one considering each of the different distances. The TDWCd`

with respect to each distance d` is calculated for the proposed method and all
10 kmeans (no matter the distance that was used for the method).

Since the distances are measured in different orders of magnitude, it is nec-
essary to exploit the relative information and deal with the rankings induced by
the 10 computed TDWC. More specifically, for each distance, we calculate the
associated TDWCd`

for the proposed method and all 10 kmeans. The 11 meth-
ods are ranked according to increasing TDWCd`

for each distance d`. Thus, 10
rankings of the methods are obtained. Finally, to obtain an overall ranking of
the methods, the Borda Count is applied to these obtained 10 rankings.

Example 2. A little example is outlined given the toy dataset consisting of 15
objects and 2 variables (x and y) presented in Table 3.

Table 3. Points of a normalized dataset used as an example for illustrating the pro-
posed method.

A B C D E F G H I J K L M N O

x 0.05 0.00 0.09 0.87 1.00 0.76 0.68 0.48 0.92 0.47 0.55 0.56 0.24 0.16 0.04

y 0.34 0.41 0.27 0.20 0.09 0.00 0.55 0.44 0.61 0.88 0.86 1.00 0.64 0.61 0.68

The dataset shown in Table 3 is grouped into clusters 11 different times using
different techniques: 10 times using kmeans with a different distance d` (among
those presented in Subsection 2.2) and 1 additional time using the proposed
method with the ten distances. The value of k has been set to 3 and all the
partitions have been initialized with the same random centers.

Fig. 1 shows how the TDWCd`
associated with each d` evolves for each

method. Note that the TDWCd`
for the proposed method is generally decreasing,

thus showing that iterating the method leads to a better partition of the dataset
into clusters. Also, the proposed method tends to lead to a smaller TDWCd`

than most of the other methods, even though the method with the smallest
TDWCd`

tends to be the kmeans corresponding to the distance d` that is being
used for the TDWCd`

. As will be later explained, all these tendencies have also
been observed in all the 81 datasets that have been used for the experiments.
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Fig. 1. Evolution of the different TDWCd` according to each method through the
iterations of kmeans and the proposed method. Each box represents the TDWCd`

associated with a certain d` and each line represents the evolution of TDWCd` for one
of the considered methods.
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Table 4. Values of TDWCd` for each distance d` obtained for the example dataset
when applying the proposed method and all ten kmeans.

can che cos euc jac man mat trd vic mas borda

TDWCcan 4.701 5.109 5.131 5.109 4.602 4.313 4.274 4.274 4.602 4.274 4.121

TDWCche 1.285 0.706 0.813 0.706 1.166 0.568 1.236 1.236 1.166 1.236 0.608

TDWCcos 0.088 0.028 0.011 0.028 0.089 0.014 0.089 0.089 0.089 0.089 0.014

TDWCeuc 1.530 0.894 1.046 0.894 1.404 0.704 1.472 1.472 1.404 1.472 0.770

TDWCjac 0.439 0.236 0.413 0.236 0.335 0.196 0.395 0.395 0.335 0.395 0.181

TDWCman 2.511 1.527 1.829 1.527 2.337 1.160 2.403 2.403 2.337 2.403 1.288

TDWCmat 1.191 1.056 0.940 1.056 1.163 0.794 1.168 1.168 1.163 1.168 0.778

TDWCtrd 0.495 0.257 0.289 0.257 0.489 0.175 0.490 0.490 0.489 0.490 0.172

TDWCvic 0.712 0.380 0.472 0.380 0.692 0.259 0.699 0.699 0.692 0.699 0.262

TDWCmas 5.575 5.030 3.401 5.030 5.554 0.806 5.523 5.523 5.554 5.523 0.804

The results obtained for each TDWCd`
are shown in Table 4.

The proposed method and the 10 kmeans methods are ranked based on
increasing TDWCd`

for each d`. This results in 10 different rankings (one for
each TDWCd`

), which are shown in Table 5.

Table 5. Rankings of the methods in terms of all ten TDWCd` .

Number of voters Ranking

1 borda � mat ∼ trd ∼ mas � man � jac ∼ vic � can � che ∼ euc � cos

4 man � borda � che ∼ euc � cos � jac ∼ vic � mat ∼ trd ∼ mas � can

1 cos � borda � man � che ∼ euc � can � mat ∼ trd ∼ mas � jac ∼ vic

1 borda � man � che ∼ euc � jac ∼ vic � mat ∼ trd ∼ mas � cos � can

1 borda � man � cos � che ∼ euc � jac ∼ vic � mat ∼ trd ∼ mas � can

1 borda � man � che ∼ euc � cos � jac ∼ vic � mat ∼ trd ∼ mas � can

1 borda � man � cos � che ∼ euc � mat ∼ trd ∼ mas � jac ∼ vic � can

All the rankings shown in Table 5 are gathered into a profile of rankings,
resulting in the following ranking after computing the scores associated with the
Borda Count:

borda � man � che ∼ euc � cos � jac ∼ vic � mat ∼ trd ∼ mas � can .

We conclude that, overall, the here proposed method leads to a smaller TDWC
than all ten kmeans.

4.2 Experiments and results

In order to measure the behaviour of the proposed method, 81 datasets have
been tested. These datasets are built from artificially generated data and each
of them combines a different number of gaussian clusters and a different number
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of variables. Both the number of clusters and the number of variables in the
dataset range from 2 to 10. The value of k used in the methods has been fixed to
the real number of clusters used in the construction of the datasets to simplify
the process. Every dataset has been normalized before applying the clustering
method in order to assure that there are no negative values and, therefore, that
all distances can be applied. More details on the datasets can be found in the
following site https://noeliarico.shinyapps.io/clustering/.

An overall comparison of all methods head-to-head is presented in Table 6.
The number in each cell represents the amount of datasets for which the method
corresponding to the row was ranked at a better position the method correspond-
ing to the column in the obtained ranking. We can conclude that the proposed
method (Borda) performs better in comparison with all other kmeans at least
for half of the datasets. It is worth mentioning that the proposed method clearly
outperforms the most standard version of kmeans in which the Euclidean dis-
tance is considered.

Table 6. Pairwise comparison of the methods taking into account all the 81 datasets.
The number at the ith row and jth column represents the number of times that the
method corresponding to the ith row is ranked at a better position than the method
corresponding to the jth column. The last column presents the percentage of times
that the method corresponding to the row performs better than the other methods
over the total of 810 possible comparisons (10 methods and 81 datasets).

borda can che cos euc jac man mas mat trd vic Total

borda 0 64 71 64 56 46 65 60 49 43 41 69%

can 12 0 53 41 25 24 34 35 21 15 14 34%

che 10 26 0 26 11 10 26 25 14 9 5 20%

cos 16 39 55 0 25 18 35 41 22 19 15 35%

euc 24 54 68 54 0 37 59 53 33 28 23 53%

jac 32 55 71 61 42 0 54 54 40 35 35 59%

man 16 46 54 45 17 26 0 44 28 18 11 37%

mas 20 45 54 40 28 25 37 0 17 16 19 37%

mat 28 59 67 59 47 39 53 63 0 12 26 56%

trd 32 64 72 62 51 45 62 64 37 0 28 64%

vic 37 67 74 64 54 46 70 61 46 41 0 69%

5 Conclusions and future work

Popular clustering methods such as kmeans presume that the Euclidean dis-
tance (or some other predetermined distance) is the one that best fits the cur-
rent dataset. Some research on how to learn the most suitable distance has been
performed. Here, due to the difficulty that learning the most suitable distance
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presents in clustering, we follow a totally different approach and propose a nat-
ural variant of kmeans that jointly exploits different distances at the same time.
The presented results hint that the presented method minimizes the TDWC
associated with an unknown distance in comparison to the classical method of
kmeans.

The absence of a ground truth for the groups of objects in clustering datasets
makes the evaluation process more difficult than for other kinds of problems
such as classification. Many performance measures of different nature have been
proposed for evaluating clustering algorithms [3], even though most of them
rely on a preliminary choice of distance. In future work, we will adapt these
performance measures similarly as it has been done for the TWSS. Additionally,
since the centroid is inherently linked to the Euclidean distance, future research
will focus on how to reduce the importance of the choice of distance to the phase
in which the centers are updated.
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