Skip to main content

Towards Provably Correct Probabilistic Flight Systems

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12312))

Included in the following conference series:

Abstract

Safety envelopes are meant to determine under which conditions and state space regions a probabilistic property of a data-driven system can be asserted with high confidence. Dynamic data-driven applications systems (DDDAS) can make use of safety envelopes to be cognizant of the formal warranties derived from their models and assumptions. An example of safety envelopes is presented as the intersection of two simpler concepts: \(z\)-predictability and \(\tau \)-confidence; which correspond to state estimation and classification, respectively. To illustrate safety envelopes, stall detection from signal energy is shown with data gathered by piezo-electric sensors in a composite wing inside a wind tunnel under varying angles of attack and airspeed configuration. A formalization of these safety envelopes is presented in the Agda proof assistant, from which formally proven sentinel code can be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A probabilistic statement is a statement that includes probabilistic assertions as part of its definition, e.g., the expected value after flipping a fair coin (\(0 = \text {heads}; 1 = \text {tails}\)) is \(\frac{1}{2}\).

  2. 2.

    Full implementation and proofs can be found at http://wcl.cs.rpi.edu/pilots/fvdddas (repository name: safety-envelopes-sentinels, version 0.1.1.0).

References

  1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ahmed, S., Amer, A., Varela, C., Kopsaftopoulos, F.: Data-driven state awareness for fly-by-feel aerial vehicles via adaptive time series and gaussian process regression models. In: Dynamic Data-Driven Applications Systems (InfoSymbiotics/DDDAS 2020) (October 2020)

    Google Scholar 

  3. Alpaydin, E.: Introduction to Machine Learning, 3rd edn. The MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  4. Anand, A., Knepper, R.: ROSCoq: robots powered by constructive reals. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 34–50. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_3

    Chapter  Google Scholar 

  5. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the central limit theorem. J. Autom. Reason. 59(4), 389–423 (2017)

    Article  MathSciNet  Google Scholar 

  6. Breese, S., Kopsaftopoulos, F., Varela, C.: Towards proving runtime properties of data-driven systems using safety envelopes. In: The 12th International Workshop on Structural Health Monitoring, Stanford, CA (September 2019)

    Google Scholar 

  7. Chen, S., Imai, S., Zhu, W., Varela, C.A.: Towards learning spatio-temporal data stream relationships for failure detection in avionics. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 97–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_5

    Chapter  Google Scholar 

  8. Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86

    Chapter  Google Scholar 

  9. Hasan, O., Tahar, S.: Probabilistic analysis of wireless systems using theorem proving. Electron. Notes Theor. Comput. Sci. 242(2), 43–58 (2009)

    Article  Google Scholar 

  10. Hurd, J.: Formal verification of probabilistic algorithms. Tech. rep. UCAM-CL-TR-566, University of Cambridge, Computer Laboratory (May 2003)

    Google Scholar 

  11. Imai, S., Blasch, E., Galli, A., Zhu, W., Lee, F., Varela, C.A.: Airplane flight safety using error-tolerant data stream processing. IEEE Aerosp. Electron. Syst. Mag. 32(4), 4–17 (2017)

    Article  Google Scholar 

  12. Kopsaftopoulos, F.: Data-driven stochastic identification for fly-by-feel aerospace structures: critical assessment of non-parametric and parametric approaches. In: AIAA Scitech 2019 Forum, p. 1534 (2019)

    Google Scholar 

  13. Kopsaftopoulos, F., Chang, F.-K.: A dynamic data-driven stochastic state-awareness framework for the next generation of bio-inspired fly-by-feel aerospace vehicles. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 697–721. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_31

    Chapter  Google Scholar 

  14. Kopsaftopoulos, F., Nardari, R., Li, Y.H., Chang, F.K.: Data-driven state awareness for fly-by-feel aerial vehicles: experimental assessment of a non-parametric probabilistic stall detection approach. In: Structural Health Monitoring 2017, pp. 1596–1604. DEStech Publications, Inc. (September 2017)

    Google Scholar 

  15. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Oxford University Press Inc., USA (1994)

    MATH  Google Scholar 

  16. Marlow, S., et al.: Haskell 2010 language report (2010). https://www.haskell.org/onlinereport/haskell2010

  17. Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden (September 2007)

    Google Scholar 

  18. Paul, S., Hole, F., Zytek, A., Varela, C.A.: Flight trajectory planning for fixed wing aircraft in loss of thrust emergencies. In: Dynamic Data-Driven Application Systems (InfoSymbiotics/DDDAS 2017), Cambridge, MA (August 2017)

    Google Scholar 

  19. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded systems. Innov. Syst. Softw. Eng. 9(4), 235–255 (2013)

    Article  Google Scholar 

  20. Qasim, M., Hasan, O., Elleuch, M., Tahar, S.: Formalization of normal random variables in HOL. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 44–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42547-4_4

    Chapter  Google Scholar 

  21. Ricketts, D., Malecha, G., Alvarez, M.M., Gowda, V., Lerner, S.: Towards verification of hybrid systems in a foundational proof assistant. In: 2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE), pp. 248–257 (September 2015)

    Google Scholar 

  22. Srivatanakul, T.: Security analysis with deviational techniques. Ph.D. thesis, University of York, York, UK (April 2005)

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by the National Science Foundation (NSF), Grant No. – CNS-1816307, and the Air Force Office of Scientific Research (AFOSR), DDDAS Grant No. – FA9550-19-1-0054.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elkin Cruz-Camacho , Saswata Paul , Fotis Kopsaftopoulos or Carlos A. Varela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz-Camacho, E., Paul, S., Kopsaftopoulos, F., Varela, C.A. (2020). Towards Provably Correct Probabilistic Flight Systems. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics