Skip to main content

A Dynamic Data Driven Applications Systems (DDDAS)-Based Digital Twin IoT Framework

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12312))

Abstract

One of the key elements of DDDAS is the ability to create a feedback control loop from the sensory system to the model to enable more accurate and fast data-driven analysis. When constructing such a framework, it is especially important to provide an efficient, filtered data stream to the model. To address this need, this investigation describes a DDDAS-based Digital Twin IoT Framework which comprises three layers, namely the Edge, Fog and Cloud. The Edge is composed of either commercial sensing data acquisition systems or by sensors without any commercial system being involved. The Edge layer is connected to the Fog which is a decentralized computing layer that consists of an in-house built Internet of Things (IoT) device. Within the Fog, real-time data is aggregated, parsed, filtered, and passed through a layer of user-defined algorithms. These algorithms can be either predefined or made using an interactive algorithm building application. The main goal of the algorithms used at the Fog, is to reduce the incoming data and classify it into known classes. This process allows a real-time data flow to the Cloud, as only important decision-making components of the data is propagated. The algorithms are trained in the Cloud layer using historic data to enable stronger confidence in Prognostics and Remaining Useful Life (RUL) calculations. The Cloud is also responsible for hosting a user interface (UI) to interact with the Edge and Fog Layers and the Digital Twin model. The UI enables users to start, stop, and modify their data acquisition and visualize their analytics in (near) real-time. In the proposed study, sensing data obtained through mechanical testing using a carbon composite will be leveraged for the framework. Diagnostics and Prognostics leveraging a probability framework will be conducted on the sensor data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beaumont, P.W., Soutis, C. (eds.): The Structural Integrity of Carbon Fiber Composites. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46120-5

    Book  Google Scholar 

  2. Johnson, W.S., Hillberry, B.M., Johnson, H.B.: Probabilistic Aspects of Life Prediction. ASTM International, West Conshohocken (2004)

    Book  Google Scholar 

  3. Hashemian, H.M.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 60(1), 226–236 (2010)

    Article  MathSciNet  Google Scholar 

  4. Sakib, N., Wuest, T.: Challenges and opportunities of condition-based predictive maintenance: a review. Procedia CIRP 78, 267–272 (2018)

    Article  Google Scholar 

  5. Hazeli, K., et al.: Three-dimensional effects of twinning in magnesium alloys. Scripta Mater. 100, 9–12 (2015). https://doi.org/10.1016/j.scriptamat.2014.12.001

    Article  Google Scholar 

  6. Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J.: Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, 799–834 (2018)

    Article  Google Scholar 

  7. Cuadra, J., Vanniamparambil, P.A., Hazeli, K., Bartoli, I., Kontsos, A.: Damage quantification in polymer composites using a hybrid NDT approach. Compos. Sci. Technol. 83, 11–21 (2013)

    Article  Google Scholar 

  8. Mesquita, F., Swolfs, Y., Lomov, S.V., Gorbatikh, L.: Ply fragmentation in unidirectional hybrid composites linked to stochastic fibre behaviour: a dual-scale model. Compos. Sci. Technol. 181, 107702 (2019)

    Article  Google Scholar 

  9. Mehrmashhadi, J., Chen, Z., Zhao, J., Bobaru, F.: A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites. Compos. Sci. Technol. 182, 107770 (2019)

    Article  Google Scholar 

  10. Ohtsu, M., Enoki, M., Mizutani, Y., Shigeishi, M.: Principles of the acoustic emission (AE) method and signal processing. Practical Acoustic Emission Testing, pp. 5–34. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55072-3_2

    Chapter  Google Scholar 

  11. Aggarwal, Charu C.: Outlier analysis. Data Mining, pp. 237–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8_8

    Chapter  Google Scholar 

  12. McLachlan, G.J.: Mahalanobis distance. Resonance 4(6), 20–26 (1999)

    Article  Google Scholar 

  13. Rabiner, L.R., Juang, B.-H.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Article  Google Scholar 

  14. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  15. Standard, A.: D3039/D3039M-00, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken (2000)

    Google Scholar 

  16. Marlett, K., Ng, Y., Tomblin, J.: Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35% RC qualification material property data report. FAA, FAA Special Project Number SP4614WI-Q (2011)

    Google Scholar 

  17. Stelzer, S., Brunner, A., Argüelles, A., Murphy, N., Pinter, G.: Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: development of a standardized test procedure. Compos. Sci. Technol. 72(10), 1102–1107 (2012)

    Article  Google Scholar 

  18. A. International: ASTM D5766/D5766M-07-Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates, ASTM International, West Conshohocken (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Kontsos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malik, S., Rouf, R., Mazur, K., Kontsos, A. (2020). A Dynamic Data Driven Applications Systems (DDDAS)-Based Digital Twin IoT Framework. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics