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Abstract. We study the applicability of quantum algorithms in compu-
tational game theory and generalize some results related to Subtraction
games, which are sometimes referred to as one-heap Nim games.
In quantum game theory, a subset of Subtraction games became the first
explicitly defined class of zero-sum combinatorial games with provable
separation between quantum and classical complexity of solving them.
For a narrower subset of Subtraction games, an exact quantum sublinear
algorithm is known that surpasses all deterministic algorithms for finding
solutions with probability 1.
Typically, both Nim and Subtraction games are defined for only two play-
ers. We extend some known results to games for three or more players,
while maintaining the same classical and quantum complexities: Θ

(

n2
)

and Õ
(

n1.5
)

respectively.
Keywords: quantum game theory, quantum combinatorial games, quan-
tum multiplayer games, quantum algorithm, Nim, subtraction game

1 Introduction

Quantum game theory traditionally is being studied in the context of nonlocal
properties of quantum particles, and usually stays apart from quantum comput-
ing and quantum algorithms. In contrast, Quantum combinatorial game theory

is an approximately yearling branch of game theory, where quantum algorithms
are applied for solving classical combinatorial games.

First explicit examples of combinatorial games with quantum-better-than-
classical solving algorithms are some subsets of Subtraction games. [11] identify

a specific subset of size constn
2

of Subtraction games which are solvable by a
quantum algorithm in time O

(

n1.5 log n
)

in bounded error setting. [9] identify a

smaller set of size const
√
n logn of restricted Subtraction games which are solvable

by an exact quantum algorithm in time O
(

n1.5
)

. Deterministic algorithms for

both classes of games require Ω
(

n2
)

steps for solving. (Hereafter n + 1 stands
for the number of positions in a game, regardless which of the players has to
make the next move.)

http://arxiv.org/abs/2006.06965v1


A Subtraction game is similar to a canonical Nim game [6] in several senses.
Nim is a notable game in game theory because it traditionally serves as a “base
case” for Sprague-Grundy theorem [13,8], which establishes a deterministic up-
per bound for solving many combinatorial games. Similarly, Subtraction games
seem to become a good candidate for being a “base sample” for game-solving
Quantum Dynamic Programming. And like many games are known to be re-
ducible to some Nim games, also many games on graphs can be reduced to the
corresponding Subtraction games. Finally, the rules of these games have very
similar definitions.

The difference between these two games is that in a Subtraction game, the
players deal with just one heap of stones, though with certain limitations im-
posed on the number of stones they can take from the heap. The most common
limitation for Subtraction games is defining a maximum for the number of stones
to be taken away, and this kind of Subtraction game has very fast deterministic
solutions in Õ (1). Here we study a much more general class of such limitations
and thus a broader class of Subtraction games.

We investigate algorithms for solving Subtraction games, that is determining
the payoffs of all the players, assuming each of them to play optimally. We
exploit techniques similar to ones in [11] and [9] to establish upper bounds for
the quantum complexity and asymptotes for the classical complexity.

The paper is organized in the following way. Section 2 contains basic defini-
tions. In Section 3, we present evaluations of classical complexity and quantum
algorithms for solving a special class of games which we call balanced Subtrac-
tion games. Finally, in Section 4 we analyze the complexity of solving the so
called restricted Subtraction games.

2 Definitions

2.1 Subtraction Games

In a play of a Subtraction game players 1, . . . , k sequentially remove some pos-
itive amounts of stones from a heap, with player l being followed by player
(l mod k + 1).

Let n be the initial number of stones in the heap, and Γ be a lower-triangular
binary matrix of size n × n, with rows numbered from 1 to n and columns
numbered from 0 to n − 1. A player which has to make the next move, can
remove j − i stones (0 ≤ i < j ≤ n) from the heap with exactly j stones left
iff Γji = 1. In simple terms, Γji indicates the possibility for a player to receive
position “j stones” from the predecessor and pass position “i stones” to the
follower on the next turn.

If in some position a player, say player l0, cannot make a legal move, then
the play ends, and each player l receives their payoff $ (l − l0 + k) mod k. That
is, player l0 is the loser, the previous player is the major winner with payoff
$ (k − 1), the previous-to-previous player gets $ (k − 2) and so on. In order to
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become the major winner, a player has to take all the remaining stones, or to

leave a number of stones j such that no allowed moves would remain:
j−1
∑

i=0

Γji = 0.

Obviously, the rules of a Subtraction game are fully determined by such
matrix Γ , so hereafter we use letter Γ to denote a corresponding game. We
also reserve the name n to denote the initial number of stones. This number
n also corresponds to the dimension of the matrix Γ . Note that there are only
n (n+ 1) /2 meaningful bits in the matrix Γ , as a player cannot increase the
number of stones in the heap or leave it as is: Γji = 0 for all j ≤ i.

Finally, we note that the selected payoff function is not a must. It may be
arbitrary, provided that each player has strict preferences over the set of all
k possible endings. Otherwise, if some preferences are not strict, the concept
of optimal behavior will not be well-defined, and the required assumption of
optimal players will fail.

2.2 Winning Function

Let G be a set of lower-triangular binary matrices of size n × n, with rows
numbered from 1 to n and columns numbered from 0 to n− 1.

We define a winning function Win : G ⊗ Nn → {$w}0≤w<k, such that
Win (Γ, j) = $w iff a player gets payoff $w given position “j stones” in game Γ ,
under assumption of optimal players:

Win (Γ, j) =















$0 if j = 0,

$0 if
∑

i Γji = 0,

$

(

max
i:Γji=1

Win (Γ, i)− 1

)

mod k otherwise.

We also use notation Win (Γ ) = Win (Γ, n) for the value of game Γ .

2.3 Properties of Subtraction Games

In this work we stick to the conventional terminology of [11, Section 2.3] and [9,
Section 2.1], and use the following definitions.

We call a game Γ losing if the first player loses it assuming other players are
optimal:

Win (Γ ) = $0. (1)

We call a game Γ balanced if the values of Win (Γ, j) are uniformly dis-
tributed over the set {$w}0≤w<k:

∀w :
∣

∣

∣
#
{

j : Win (Γ, j) = $w
}

1≤j≤n
− n

k

∣

∣

∣
≤ o

(n

k

)

. (2)

When considering a random balanced game we hereafter implicitly bear in
mind the following procedure of picking a game:
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1. Assign each position “j stones” one of the values from {$0, $1, . . . , $ (k − 1)}
in the uniform fashion.

2. Assign position “0 stones” value $0.
3. Initially assign Γ = [0]ji.
4. For each position “j stones” with value $w put Γji = 1 with probability

1/2 whenever i < j and position “i stones” is assigned one of the values
$ (w + 1) mod k, $w, $ (w − 1) , . . . , $1.

5. Additionally, for each position “j stones” with value $w put Γji = 1 for one
i such that position “i stones” is assigned value $ (w + 1) mod k, whenever
it was not already done in the previous step.

6. If the previous step failed because for some position “j stones” it is not
possible to find a position “i stones” with the appropriate value, then start
everything from the beginning.

Should one feel that discarding in the last step essentially destroys the uniformity
of Win (Γ, j), they can at the second step assign each position “w stones”, 0 ≤
w < k, value $ (k − w) mod k. This will make the last step obsolete, as no failure
can occur, and will preserve the perfect uniformity. Our further observations are
valid for either kind of picking a random balanced Subtraction game.

Finally, we call a game Γ restricted if in each position at most one move is
possible:

∀j :
∑

i

Γji ≤ 1. (3)

2.4 Computational Model

To evaluate the complexity of a quantum algorithm, we use the standard form
of the quantum query model. It is a generalization of the decision tree model of
classical computation that is commonly used to lower bound the amount of time
required by a computation.

Let f : D → {0, 1}, D ⊆ {0, 1}n be an n variable function we wish to compute
on an input x ∈ D. We have an oracle access to the input x — it is realized
by a specific unitary transformation usually defined as |i〉|z〉|w〉 → |i〉|z⊕ xi〉|w〉
where the |i〉 register indicates the index of the variable we are querying, |z〉 is the
output register, and |w〉 is some auxiliary work-space. An algorithm in the query
model consists of alternating applications of arbitrary unitaries independent of
the input and the query unitary, and a measurement in the end. The smallest
number of queries for an algorithm that outputs f(x) with probability ≥ 2

3
on

all x is called the quantum query complexity of the function f and is denoted
by Q(f). In this paper, as running time of an algorithm, we mean a number of
queries to oracle.

More information on quantum computation and query model can be found
in [2,1].

To distinguish ordinary deterministic and randomized complexities from the
quantum complexity, they are traditionally called by one term classical complex-

ity.
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3 Balanced Subtraction Games

3.1 Classical Query Complexity

In this subsection we limit our considerations with the number of players k = 3,
for the sake of simplicity:

⋆ a player who cannot make a move at the end of a play gets $0;
⋆ the previous player who managed to make the last move gets $2;
⋆ the previous-to-previous player gets $1.

All similar results also hold for arbitrary k but require larger formulations, which
in our mind are redundant for understanding.

Lemma 1. Let Γ be a losing balanced Subtraction game Γ picked uniformly at

random. Let game Γ ′ differ from Γ in exactly one random bit of their binary

representations: HammingDistance (Γ, Γ ′) = 1.
Then Pr

[

Win (Γ ′) 6= Win (Γ )
]

≥ 1/18.

Proof. First, we mention the following three facts about balanced losing games.

⋆ Balancedness (2) of Γ implies:

Pr
j

[

Win (Γ, j) = $1
]

= Pr
j

[

Win (Γ, j) = $0
]

=
1

3
. (4)

⋆ Losingness (1) of Γ implies for each j, 0 < j < n:

either Γnj = 0 or Win (Γ, j) = $1, or both; (5)

otherwise the first player would be able to take n− j stones in the first turn
and thus have a positive payoff.

⋆ Assuming Γ to be picked at random, losingness (1) implies

Pr
[

Γnj = 1 | Win (Γ, j) = $1
]

=
1

2
, (6)

since possibility or impossibility of a (worst possible) move which leads to
position “j stones” with Win (Γ, j) = $1 does not affect the value of any
position.

Now let Γ ′
ji 6= Γji for some pair of indices j, i picked at random, s.t. 0 ≤ i <

j ≤ n. Then we are interested in the value of

Pr
j,i

[

Win (Γ ′) 6= Win (Γ )
]

.

Let us consider four possible cases for j and i to evaluate this probability. Readers
who only care about large values of n, are welcome to skip all but the last case,
as the former ones are highly unlikely to happen for random j and i.
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1. j = n, and i = 0.

Inversion of bit Γn0 changes the value of game Γ with certainty, since Γ is
losing (1), so and Γn0 = 0, but Γ ′ with Γ ′

n0 = 1 can be won by taking all n
stones in the first turn:

Pr
[

Win (Γ ′) 6= Win (Γ )
]

= 1

2. j = n, and i > 0.

(4) ∧ (5) implies that Pr
[

Win (Γ, i) 6= $1 ∧ Γni = 0
]

= 1 − 1
3
= 2

3
. Under

this condition, inversion of bit Γni changes the value of game Γ from $0 to
$ (Win (Γ, i)− 1) mod 3 > $0:

Pr
[

Win (Γ ′) 6= Win (Γ )
]

=
2

3

3. j < n, and i = 0.

(4) ∧ (5) ∧ (6) implies that Pr
[

Win (Γ, j) = $1 ∧ Γnj = 1
]

= 1
3
× 1

2
= 1

6

Here Win (Γ, j) = $1 means that Γj0 = 0, and inversion of this bit changes
the value of Win (Γ, j) from $1 to $2. And Γnj = 1 means that the value of
Win (Γ ) is at least (Win (Γ, j)− $1) mod k. These two facts together mean
that inversion of bit Γj0 changes the value of Win (Γ, n) from $0 to $1.
Therefore:

Pr
[

Win (Γ ′) 6= Win (Γ )
]

=
1

6

4. 0 < i < j < n.

(4)∧(5)∧(6) implies that Pr
[

Win (Γ, j) = $1∧Win (Γ, i) = $0∧Γnj = 1
]

=
1
3
× 1

3
× 1

2
= 1

18
. Here Win (Γ, j) = $1∧Win (Γ, i) = $0 means that Γji = 0,

and inversion of this bit changes the value of Win (Γ, j) from $1 to $2. And
Γnj = 1 means that the value ofWin (Γ ) is at least (Win (Γ, j)− $1) mod k.
These two facts together mean that inversion of bit Γji changes the value of
Win (Γ, n) from $0 to $1. Therefore:

Pr
[

Win (Γ ′) 6= Win (Γ )
]

=
1

18

In either case we have that Pr
[

Win (Γ ′) 6= Win (Γ )
]

≥ 1
18
.

Theorem 1. There is no deterministic or randomized algorithm for solving

function Win faster than in Ω
(

n2
)

steps.

The proof of this theorem is next to the obvious implication of Lemma 1
and is identical to [11, Theorem 1]. We refer to the aforementioned work for the
details and for the remarks on the eligibility of this proof, which are also relevant
here.
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3.2 Quantum Algorithm

In this subsection we suggest a quantum algorithm for solving an arbitrary k-
player Subtraction game. We assume the reader to be familiar with the basics
of quantum computing and, in particular, with Grover Search algorithm [7,3].
Among other problems, this algorithm is also applicable for searching in directed
acyclic graphs (DAGs) [10,4]. In this paper we apply it to Subtraction games
which essentially are games on DAGs: if a game-representing binary Γ is treated
as an adjacency matrix of DAG G = (V,E), then its set V corresponds to n
positions of the game, and its set E corresponds to all the legal moves.

The algorithm determines an optimal move in each possible position, thus
providing a strong solution of a game. But as we are interested in the value of
Win (Γ ) only, we provide a solution which only returns the value of a game.
The algorithm searches for the maximum among directly accessible vertices

Adj [j]
def
= {i : Γji}. This algorithm has two important properties:

⋆ its expected running time is O
(√

deg j
)

, where deg j
def
=

∣

∣Adj [j]
∣

∣ is the
number of vertices directly accessible from the vertex j;

⋆ it returns a vertex i′ with the maximal value of Win with a constant prob-
ability (say 0.5) if there exist one or more vertices with maximal values.

In Algorithm 1, we use Dürr-Høyer Algorithm [5] for minimum search in the
form of Grover Max subroutine which returns maximum value among its ar-
guments. We store the search results in the array w and reuse them in all the
subsequent searches.

Algorithm 1 Quantum algorithm for solving a k-player Subtraction game Γ

w0 ← $0
for j = 1 . . . n do ⊲ O (n)

wj ← $0
for z = 1 . . . 2 · log

2
n do ⊲ O (log n)

wj ← max (wj ,Grover Max {$ (wi − 1) mod k | i ∈ Adj [j]}) ⊲ O
(√

deg j
)

end for

end for

return wn

Theorem 2. Algorithm 1 computes Win (Γ ) in expected running time

O
(

√

n |E| logn
)

and with error probability ǫ . 1/n.

Proof. The correctness of the algorithm is obvious: each of the variables wj (for
j running from 1 to n) is assigned a value Win (Γ, j) according to the definition
of the function Win (Γ, j).

The time complexity follows from Cauchy-Bunyakovsky-Schwarz inequality:

n
∑

j=1

√

deg j ≤
n
∑

j=1

√

Ej [deg j] =
n
∑

j=1

√

|E| /n =
√

n |E|.

7



The probability of error in evaluating one particular wj is 2−2 log
2
n = 1/n2,

so the probability of no error at all among evaluations of w1, . . . , wn is
(

1− 1/n2
)n

& 1− 1/n.

We note that, for a random Subtraction game, the expected number of edges
E
[

|E|
]

= Θ
(

n2
)

, and then we conclude that, while the best classical algorithms

require time Θ
(

n2
)

to solve a Subtraction game, there exists a polynomially

faster quantum algorithm which runs in time O
(

n3/2 logn
)

.

The exact-time algorithm for a small number of players. If k is a small constant,
one can apply a quantum algorithm that works in exact time O(

√

n|E| logn) (in
contrast to Algorithm 1 which has the same evaluation for the expected running
time). Algorithm 2 runs Grover’s Search k − 1 times instead of running one
search for the maximum. At the t-th step the value t is to be searched for among
the values from the adjacent vertices, for t running from $ (k − 1) down to $0.
Obviously, the first found value is equal to the maximal payoff available in the
considered position “j stones”. Subroutine GROVERt in Algorithm 2 searches
for the value $t among its arguments and returns True with probability 0.5 when
there is such value, and False otherwise. It has to be run 2 · log2 k · log2 n times
to amplify the probability of success in case if the arguments contain value $t.

Algorithm 2 Quantum algorithm for solving a k-player Subtraction game Γ ,
where k is a small constant

w0 ← $0
for j = 1 . . . n do ⊲ O (n)

wj ← $0
t← $ (k − 1)
while t > $0 ∧ wj = $0 do

for z = 1 . . . 2 · log
2
n · log

2
k do ⊲ O (log n)

if Grovert {$ (wi − 1) mod k | i ∈ Adj [j]} then ⊲ O
(√

deg j
)

wj ← t

end if

end for

t← t− $1
end while

end for

return wn

Theorem 3. If k is a small constant, Algorithm 2 computes Win (Γ ) in exact

running time O
(

√

n |E| logn
)

and with error probability ǫ . 1/n.
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4 Restricted Subtraction Games

4.1 Concept of Solution

Restricted Subtraction games are, in some sense, degenerated, as players essen-
tially have no choice in either position. Nevertheless, these games are of natural
interest in terms of the computational complexity of Boolean functions. Namely,
they became the first functions formulated in terms of a game, that demonstrate
polynomial separation between exact quantum query complexity and classical
query complexity.

We note that the adaptive deterministic query complexity of Win (Γ ) for
a restricted Subtraction game Γ is n. The upper bound n follows from a very
simple analysis of Algorithm 3, the lower bound n also is obvious.

Algorithm 3 Computing Win (Γ ) for a restricted Subtraction game Γ

wn ← $0
j ← n

for i = n− 1, . . . , 0 do

if Γji = 1 then

j ← i

wn ← $ (wn − 1) mod k

end if

end for

return wn

Instead of computing Win (Γ ) for a restricted Subtraction game Γ , [9] aims
for a more ambitious problem of solving all positions of a game, i.e. of finding
vector W =

[

Win (Γ, j)
]

j
.

4.2 Classical Query Complexity

Theorem 4. Classical query complexity of computing
[

Win (Γ, j)
]

j
for a k-

player restricted Subtraction game Γ is Θ
(

n2
)

.

The proof is identical to one of [9, Theorem 1], which was formulated for the
two-player games, but is valid also for the multiplayer games.

4.3 Quantum Algorithm

To solve a restricted Subtraction game, we modify Algorithm 1 according to the
idea from [9]. We run exact Grover’s search for a non-zero element in each row.
Exact Grover’s search [12] is a modification of Grover’s algorithm, which returns
the position of the non-zero element in a binary string with Hamming weight
1, or False if its Hamming weight is 0. It cannot handle strings with a bigger
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Hamming weight, but for the promised input, it works in exact time O (
√
n)

for an n-bit binary string, and with no errors. Subroutine Exact Grover of
Algorithm 4 refers to the exact Grover’s search. In contrast to Algorithms 1 and
2, this subroutine has to be called just once as its result is exact and does not
need to be amplified.

Algorithm 4 Quantum algorithm for solving a restricted k-player game Γ

w0 ← $0
for j = 1 . . . n do ⊲ O (n)

t← Exact Grover {Adj [j]} ⊲ O
(√

deg j
)

wj ← $ (wt − 1) mod k

end for

return w

Theorem 5. Algorithm 4 computes Win (Γ ) in exact running time O
(

n1.5
)

and with no error.

The theorem follows from the properties of exact Grover’s search and the
evaluation of O(

√
deg j) as in the proof of Theorem 2.

5 Conclusion

Recent results in quantum game theory have stepped into the field of combi-
natorial games. In this work we generalized several of these results for solving
multiplayer combinatorial games. In particular, we established several upper
bounds for quantum query complexity, which generally correspond to the run-
ning time of a quantum algorithm. We also derived several classical lower bounds
for these problems. We did not focus on the classical upper bounds, but they
obviously coincide with the lower bounds, which can be shown just by describing
the straightforward dynamic programming approach.

The polynomial separation between quantum and classical complexities was
shown using different kinds of games and different concepts of solution, but
all of them engage Subtraction games for the demonstration of the power of
quantum algorithms in combinatorial game theory. Perhaps, one should expect
better and more general bounds to emerge for the quantum complexity of solving
Subtraction games. Of course, we hope also for detecting other examples of games
with quantum-smaller-than-classical complexity.
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