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Abstract. In a previous paper we introduced immediate observation
Petri nets [9], a subclass of Petri nets with application domains in dis-
tributed protocols and theoretical chemistry (chemical reaction networks).
IO nets enjoy many useful properties [9,13], but like the general case
of conservative Petri nets they have a PSPACE-complete reachability
problem. In this paper we explore two restrictions of the reachability
problem for IO nets which lower the complexity of the problem drastically.
The complexity is NP-complete for the first restriction with applications
in distributed protocols, and it is polynomial for the second restriction
with applications in chemical settings.
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1 Introduction

In this paper we refine our results about the complexity of verifying immediate
observation Petri nets [9] in the case of two restrictions of such nets. Petri nets and
their subclasses are widely used and studied in the context of software and system
verification (e.g. [7]), but also others such as game theory (e.g. [11]), chemical
reaction networks (e.g. [3]) etc. Unfortunately many important problems there
have high complexity, and reachability is at least TOWER-hard in the general
case [6]. This motivates the study of subclasses of Petri nets.

Immediate observation Petri nets (IO nets) are a reformulation of immediate
observation population protocols, which have been introduced by Angluin et al. in
[2]. Initially, they were studied from the point of view of computing predicates in a
distributed system, where their expressive power is lower than general population
protocols (conservative Petri nets) but still considerable. Many verification prob-
lems for IO nets are PSPACE-complete; among them set-parametrized problems
for sets defined by boolean combinations of bounds on token counts. This is a
significant improvement compared to the general or conservative case of Petri
nets, where EXPSPACE-hard [4] and even harder verification problems are the
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norm. IO nets provide a natural description of some distributed systems, but
also can be used to describe enzymatic chemical networks [1].

Of course, a subclass of reachability problems with a better computational
complexity raises some natural, even if informal, questions. What allows better
complexity and can it be generalized to some wider subclass? What keeps the
complexity from being even lower and are there useful subclasses without these
obstacles? Are there applications where a typical problem can be solved more
efficiently? We believe that branching immediate observation nets, a generalization
of IO nets and basic parallel processes with reachability problem in PSPACE[13],
answer the first question. The present paper is devoted to the last two questions.

We consider two restrictions, the first one a syntactic restriction defining a
subclass of IO nets, and the second a condition on the initial and final markings
considered in the reachability problem for IO nets. The first restriction is plausible
in some distributed systems, and it also bears similarity to the delayed observation
population protocols introduced by Angluin et al. in [2]. The second restriction has
applications in some chemical systems (enzymatic chemical reaction networks, [1]).
We show the first restriction entails an NP-complete reachability problem, and
for the second restriction we provide a polynomial algorithm deciding reachability
or giving a witness that the restriction does not hold.

The rest of the paper is organized as follows. In section 2, we recall some
general definitions regarding Petri nets, as well as the classic maximum flow
minimum cut problem. Section 3 defines immediate observation Petri nets. Then
we show the effects for reachability complexity of two restrictions on IO nets:
keeping transitions enabled once enabled in Section 4, and requiring all token
counts and their combinations to be large or zero in Section 5. Finally, we
summarize our results in the conclusion and outline some further directions.

2 Preliminaries

Multisets. A multiset on a finite set E is a mapping C : E → N, i.e. for any
e ∈ E, C(e) denotes the number of occurrences of element e in C. Let He1, . . . , enI
denote the multiset C such that C(e) = |{j | ej = e}|. Operations on N like
addition or comparison are extended to multisets by defining them component

wise on each element of E. Given X ⊆ E define C(X)
def
=
∑
e∈X C(e). We call∑

e∈E C(e) the size of C and note it |C|.

Place/transition Petri nets with weighted arcs. A Petri net N is a triple
(P, T,W ) consisting of a finite set of places P , a finite set of transitions T and
a weight function W : (P × T ) ∪ (T × P ) → N. A marking M is a multiset on
P , and we say that a marking M puts M(p) tokens in place p of P . The size
of M , denoted by |M |, is the total number of tokens in M . The preset •t and
postset t• of a transition t of T are the multisets on P given by •t(p) = W (p, t)
and t•(p) = W (t, p). A transition t is enabled at a marking M if •t ≤M , i.e. •t
is component-wise smaller or equal to M . If t is enabled then it can be fired,

leading to a new marking M ′ = M − •t+ t•. We let M
t−→M ′ denote this. Given
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σ = t1 . . . tn we write M
σ−→Mn when M

t1−→M1
t2−→M2 . . .

tn−→Mn, and call σ a
firing sequence. We write M ′

∗−→M ′′ if M ′
σ−→M ′′ for some σ ∈ T ∗, and say that

M ′′ is reachable from M ′.

Flows and cuts. A flow graph is a triple G = (V,A, c) where V is a finite set
of vertices, A ⊆ V 2 is a finite set of arcs, and c : A→ N ∪ {∞} is a nonnegative
capacity function on arcs. Given an arc a ∈ A, we call c(a) the capacity of a.
Notice that this capacity can be infinite. A flow graph contains two special
vertices i and o, called the inlet and outlet, such that i has no incoming arc and
o has no outgoing arc. A flow of a flow graph is a function f : A→ N such that
f(a) ≤ c(a) for each arc a ∈ A, and for each vertex v ∈ V \ {i, o}, the sum of
the flow over v’s incoming arcs is equal to the sum of the flow over v’s outgoing
arcs. The value of a flow is the sum

∑
(i,p)∈A f((i, p)) of the flow over all arcs

from the inlet, or equivalently the sum
∑

(p,o)∈A f((p, o)) of the flow over all arcs

to the outlet. A cut in a flow graph G = (V,A, c) is a pair of disjoint subsets
VI t VO = V such that the inlet is in VI and the outlet is in VO. The capacity of
a cut (VI , VO) is the sum of the capacities of all the arcs going from vertices in VI
to vertices in VO. We say an arc a = (u, v) crosses the cut, if u ∈ Vi and v ∈ VO.

We recall two classic theorems.

Theorem 1 (Max-flow min-cut theorem [10]). In a flow graph, the maxi-
mum value of a flow is equal to the minimum capacity of a cut.

Theorem 2 (Dinitz algorithm [8]). Given a flow graph, a flow with the
maximum value and a cut with the minimum capacity can be found in polynomial
time.

3 Immediate observation Petri nets

We recall the definition of immediate observation nets (IO nets) from [9].

Definition 1. A transition t of a Petri net is an immediate observation transi-
tion (IO transition) if there are places ps, pd, po, not necessarily distinct, such
that •t = Hps, poI and t• = Hpd, poI. We call ps, pd, po the source, destination,

and observed places of t, respectively. We denote by ps
po−→ pd such a transition.

A Petri net is an immediate observation net (IO net) if all its transitions are IO
transitions.

Following the graphical convention of [12] for contextual nets, we represent
the Petri net arcs (po, t) and (t, po) by an undirected arc between t and po in our
figures. This emphasizes that transition t has a read-only relation to its observed
place po. In the examples, we also consider IO nets containing transitions with
no observed place. To make the net a formally correct IO net, it suffices to add
an extra marked place which acts as observed place for these transitions.

IO nets are conservative, i.e. there is no creation or destruction of tokens.
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p1 p2

p3

t1 t2

t3

t4

Fig. 1: An IO net.

Example 1. Figure 1 shows an IO net taken from the literature on population
protocols [2]. Intuitively, it models a protocol allowing a crowd of undistinguish-
able agents that can only interact in pairs to decide whether they are at least 3.
Given a marking M0 with tokens only in p1, if M0(p1) ≥ 3, then repeated firing
of an arbitrary enabled transition eventually puts all the tokens into p3.

In [9], we showed that given an IO net N and two markings M,M ′, deciding
whether M ′ is reachable from M is a PSPACE-complete problem. The proof of
PSPACE-hardness for the reachability problem in IO nets uses a reduction from
the halting problem of linear-space Turing machines. The reduction is done by
simulating the runs of the Turing machine: places describe the state of the head
and of the tape cells, and transitions model the movement of the head and the
change in the symbols on the tape cells. In the construction a specific “success”
place becomes marked if and only if the machine reaches the halting state without
exceeding the permitted space.

The nets provided by this reduction have two common properties. First, the
transitions get enabled and disabled a large number of times. Second, the markings
put at most one token per place. We show how forcing a strong enough contrary
condition to at least one of these properties leads to much easier verification.

4 First restriction: transition enabling

The PSPACE-hardness proof for IO reachability relies on the observation require-
ments of some transitions switching between satisfied and unsatisfied many times.
In some distributed systems, observations correspond to irrevocable declarations
of the agents, for example in some multi-phase commit protocols. We consider
IO nets where a token move enabled by observing some token remains enabled
even when the observed token has changed places. We formalize such a property
in the following definition.

Definition 2. An IO net is non-forgetting if for each transitions p
r−→ q and

r
s−→ r′ there is also a transition p

r′−→ q.

Consider a marking of an IO net where the observation place of some transition
with source place p and destination place q is marked. If there is a token in place
p, then it can move to q. We say that the token move from p to q is enabled. In
a non-forgetting IO net, once the token move from p to q is enabled in some
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marking of a firing sequence, it stays enabled in the subsequent markings of
the firing sequence. Notice that the token move from p to q being enabled in a
marking is not equivalent to a transition from p to q being enabled: a transition
is enabled when both its observation place and its source place are marked,
whereas a token move is enabled as soon as the observation place of some suitable
transition is marked.

I P

R

t1

t2t3 t4

Fig. 2: A non-forgetting Petri net.

Example 2. The non-forgetting IO net of Figure 2 models one of the steps of
updating a shared state: A proposal can be published and stored, and every agent
has an opportunity to veto it.

All agents start in the initial state I. Some agent can propose a change by
moving from state I to state P . If there is a proposal, an agent can move from
state I to state P to support the proposal, or go to the state R to reject the
proposal. If there is an agent rejecting the proposal (i.e. in the state R), other
agents can move to R both from I and from P to recognise the fact that the
proposal has been rejected. Note that the agents cannot reject a proposal before
it has been created, which is encoded by P being the observed place of t2. Also
note that the agent proposing a change cannot start rejecting it until some other
agent rejects it.

The reachability problem for such IO nets becomes much simpler.

Theorem 3. The reachability problem for non-forgetting IO nets is in NP.

Proof. Let N be a non-forgetting IO net. Consider a (non-empty) firing sequence
σ of N from markings M to M ′. It can be decomposed into n non-empty
subsequences σi such that M = M0

σ1−→ M1
σ2−→ M2 . . .

σn−−→ Mn = M ′ for some
n > 0, and such that Mi are the markings of the firing sequence in which new
token moves become enabled. Recall that since N is non-forgetting, a token move
once enabled remains enabled. There are at most |P |2 such subsequences in any
firing sequence, and in each subsequence the set of enabled token moves is fixed.

Example 3. Consider the net of Example 2, and the firing sequence t32t4 from
marking (4, 1, 0), which put 4 tokens in I, 1 tokens in P and 0 token in R,
to marking (1, 0, 4). This firing sequence is decomposed into two subsequences:

(4, 1, 0)
t2−→ (3, 1, 1) and (3, 1, 1)

t22t4−−→ (1, 0, 4). In the first, the token moves from
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I to R and from I to P are enabled. In the second, these token moves as well as
the token move from P to R are enabled.

To show that the reachability problem for non-forgetting IO nets is in NP, we
define a reachability certificate and show how it can be verified in polynomial
time. The certificate corresponding to a firing sequence consists of the markings
in which some token move is enabled for the first time. Such a certificate has
polynomial length by the above considerations on the number of subsequences.

We now show that the reachability problem in an IO net with a fixed set of
enabled token moves is reducible to the maximum flow problem on graphs. Let
N be an IO net, let M,M ′ be two markings of N . We define G as the flow graph
with vertices identified with the places P of N , as well as two additional vertices
i and o, the inlet and outlet of the flow graph. For each enabled token move from
p to q for some places p, q, there is an arc from p to q in G with infinite capacity.
Each vertex p identified with a place of N has one incoming arc from the inlet i
with capacity M(p), and one outgoing arc to the outlet o with capacity M ′(p).

Example 4. Figure 3 illustrates two such flow graphs for the non-forgetting IO
net of Example 2. The first flow graph corresponds to the enabled token moves
from I to R and from I to P , with markings M = (4, 1, 0) and M ′ = (3, 1, 1).
The second flow graph corresponds to the enabled token moves from I to R, from
I to P and from P to R, with markings M = (3, 1, 1) and M ′ = (1, 0, 4).

i P

I

R

o

4

1

0

∞

∞

3

1

1
i P

I

R

o

3

1

1

∞

∞
∞

1

0

4

Fig. 3: Flow graphs corresponding to the non-forgetting net of Fig. 2.

A firing sequence σ from M to M ′ in N corresponds naturally to an integer
flow f on G, where for all vertices p and q corresponding to places of the IO net,
f(i, p) = M(p), f(p, o) = M ′(p) and f(p, q) is equal to the number of transitions
from p to q in σ. This flow has value |M | = |M ′|.

Conversely, an integer flow of value |M | = |M ′| corresponds to a firing
sequence in N , provided N has a fixed set of enabled token moves. Let us
consider such a flow f . It corresponds to a multiset θ of token moves. Starting
with the marking M , we remove from the multiset some token move with the
source place having more tokens than in M ′ and fire some corresponding enabled
transition. We continue until we reach M ′. The details of the construction and
its correctness proof are purely technical and can be found in the appendix.

We see that verifying a certificate requires a polynomial number of invocations
of a polynomial-time algorithm. This concludes the proof.

In fact the reachability problem is NP-complete.
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Theorem 4. Reachability problem for non-forgetting IO nets is NP-hard.

Proof (Sketch). NP-hardness of reachability is proved by a reduction from the
NP-complete SAT problem. Consider a SAT instance represented as a circuit of
binary “NAND” (¬(x ∧ y)) operations. One can construct a net such that its
runs correspond to the input nodes of the circuit choosing arbitrary input values,
and the operation nodes of the circuit evaluating the function given the chosen
values of the inputs. The technical details are provided in the appendix.

5 Second restriction: token counts

Another property of the PSPACE-hardness reduction for IO nets is the low number
of tokens in each place. Specifically, no reachable marking puts more than one
token in any place. Some systems exhibit a very different behaviour. For instance
in most cases of chemical reaction networks, the number of individual molecules
is much larger than the number of species of molecules. Additionally, we do
not expect any chance “near-misses” between the configuration of the molecules
before and after a reaction sequence. If the total amount of molecules of some
group of species before the reaction sequence is approximately equal to the
amount of molecules of some other group of species afterwards, there must be a
precise equality following from some conservation laws.

This behaviour can be formalized by the following condition.

Definition 3. A pair of markings M and M ′ of an IO net of place set P is a near-
miss pair if there exists sets of places X and Y such that 0 < |M(X)−M ′(Y )| ≤
|P |3. A pair which is not a near-miss is called a no-near-miss pair.

Observe that each place of markings M and M ′ such that M,M ′ are a no-
near-miss pair can be either unmarked or contain at least |P |3 tokens. This can
be seen by examining sets X = {p} and Y = ∅, or X = ∅ and Y = {p} in the
definition.

PE E

R

P1

P2

Fig. 4: An example of an IO net with enzyme production and use.

Example 5. Consider the IO net of Figure 4 which models a system where an
enzyme E can be produced by an enzyme producer PE, and where a resource
molecule R can transform into a product molecule P1 in the presence of an
enzyme E, or into a product molecule P2. On the one hand, the total amount
of the two products P1 and P2 together must match the amount of resource R
consumed; on the other hand, it would be surprising if the two products were
produced in the same amounts with high but imperfect precision, as there is
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nothing ensuring such an approximate equality. Informally, we can consider the
scales from an example of [5] cited in [1]. Five species of molecules are considered
in a milliliter-scale cell (although with a different net which is not immediate
observation). The concentrations of molecules are measured in picomoles per
milliliter. As a picomole contains more than 1011 molecules, equalities that hold
up to 103 molecules have a relative error of 10−8. Such equalities might be
expected to follow from some conservation laws and be precise.

Theorem 5. The IO net reachability problem for no-near-miss pairs of markings
is in P. Moreover, there is a polynomial-time algorithm such that for every pair
of markings M,M ′ it either resolves reachability, giving a witness firing sequence
if it exists, or reports a near-miss in M and M ′.

Even though the no-near-miss property is NP-complete (e.g. via SUBSET-
SUM), making a proof of its violation an alternative valid answer of the algorithm
simplifies IO reachability.

Remark 1. Requiring only that the initial and final markings of a firing sequence
have many tokens in the non-empty places does not give us a better complexity
than the general PSPACE-complete case.

Example 6. Consider two markings on the net of Figure 4, M with 200 tokens
in PE and 400 tokens in R, and M ′ with 200 tokens in E and 400 tokens in
P1. The pair (M,M ′) is a no-near-miss, and we will illustrate the algorithm by
verifying reachability from M to M ′.

The core idea of the algorithm is to maintain an increasing set of restrictions.
Once there are no restrictions to add, we either construct a firing sequence
from M to M ′ satisfying the obtained restrictions and no other ones, use the
restrictions to prove that M cannot reach M ′, or find a near-miss in M and M ′.

5.1 Restrictions

We first recall some definitions from [9], and then describe our restrictions and
what it means for a restriction set to be stable.

Trajectories and histories. Since the transitions of IO nets do not create or
destroy tokens, we can give tokens identities. Given a firing sequence, each token
of the initial marking follows a trajectory through the places of the net until it
reaches the final marking of the sequence. The trajectories of the tokens between
given source and target markings constitute a history.

A trajectory of IO net N is a sequence τ = p1 . . . pk of places. We let τ(i)
denote the i-th place of τ . The i-th step of τ is the pair τ(i)τ(i+ 1). A history H
of length h is a multiset of trajectories of length h. Given an index 1 ≤ i ≤ h, the
i-th marking of H, denoted M i

H , is defined as follows: for every place p, M i
H(p) is

the number of trajectories τ ∈ H such that τ(i) = p. The markings M1
H and Mh

H

are the initial and final markings of H, and we write M1
H

H−→Mh
H . A history H

of length h ≥ 1 is realizable if there exist transitions t1, . . . , th−1 and numbers
k1, . . . , kh−1 ≥ 0 such that
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– M1
H

t
k1
1−−→M2

H · · ·M
h−1
H

t
kh−1
h−1−−−−→Mh

H , where for every t we define M ′
t0−→M iff

M ′ = M .
– For every 1 ≤ i ≤ h − 1, there are exactly ki trajectories τ ∈ H such that
τ(i)τ(i+ 1) = pspd, where ps, pd are the source and target places of ti, and
all other trajectories τ ∈ H satisfy τ(i) = τ(i+ 1). Moreover, there is at least
one trajectory τ in H such that τ(i)τ(i+ 1) = popo, where po is the observed
place of ti. We say that ti realizes step i of H.

We say that tk11 · · · t
kh−1

h−1 realizes H. Intuitively, at a step of a realizable history
only one transition occurs, although perhaps multiple times, for different tokens.
From the definition of realizable history we immediately obtain:

– M ′
∗−→M iff there exists a realizable history with M ′ and M as initial and

final markings.
– Every firing sequence that realizes a history of length h has accelerated length

at most h.

Restriction definition. Given an IO net N , places p, q, r of N , and two markings
M and M ′, we say that a token goes from p to q via r if there exists a realizable
history H of length h between M and M ′ and a trajectory τ in H such that
τ(1) = p, τ(h) = q and τ(i) = r for some i ∈ {1, . . . , h}.

Given a pair M,M ′, our algorithm computes a set R of restrictions of the
form (p, r, q). We say a restriction (p, r, q) is correct if no token goes from p to q
via r, i.e. if there is no realizable history from M to M ′ containing a trajectory
from p to q passing through r. We say that a pair of places (p, q) is forbidden
if for all r ∈ P the restriction (p, r, q) is in R. Forbidding a pair (p, q) means
adding the restriction (p, r, q) to R for all r ∈ P . A pair of places (p, q) that is
not forbidden is allowed.

Flow graph. We define a correspondence between the reachability problem in
an IO net with a (correct) restriction set and the maximum flow problem for a
certain flow graph.

Let N be an IO net of place set P , let M,M ′ be two markings of N , and let
R be a set of restrictions. We define the flow graph G = (V,A, c) with 2|P |+ 2
vertices. There are two vertices for each place p ∈ P , an “initial” copy vip and

a “final” copy vfp , as well as a distinguished inlet vertex i and a distinguished

outlet vertex o. For each place p ∈ P , there is an arc a = (i, vip) with capacity

c(a) = M(p), and an arc a = (vfp , o) with capacity c(a) = M ′(p). For each pair

of places (p, q) ∈ P 2 such that (p, q) is allowed in R, there is an arc a = (vip, v
f
q )

from the initial p-labeled vertex to the final q-labeled vertex with infinite capacity.
Note that the maximum flow value in graph G thus constructed is at most
|M | = |M ′|.

Example 7. Figure 5 illustrates the flow graph G constructed for the IO net of
Figure 4, the markings M = (200, 0, 400, 0, 0) and M ′ = (0, 200, 0, 400, 0), and
the restriction set that allows only pairs of the form (p, p) and also the pairs
(PE,E), (R,P1), (R,P2).
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i R

E

PE

P1

P2

R

E

PE

P1

P2

o

200

0

400

0

0

∞

∞

∞

∞

∞

∞

∞
∞

0

200

0

400

0

Fig. 5: Flow graph for the IO net of Figure 4 with a cut.

A realizable history H from M to M ′ naturally corresponds to a flow of value
|M |: the flow that saturates all the arcs with the finite capacities (i.e. the arcs
from the inlet and to the outlet), and assigns to an infinite-capacity arc from vip
to vfq the number of trajectories from p to q in H. Since this flow saturates all
the finite edges, it is a maximum flow.

Stable restriction set. We define the notion of a stable set of restrictions for
a pair of marking M and M ′. Intuitively, a stable set of restrictions does not
immediately exclude reachability from M to M ′, and cannot be extended.

Definition 4. A set R of correct restrictions for an IO net N and configurations
M and M ′ is stable if the following conditions hold.

1. The maximum flow in the corresponding flow graph is equal to the size |M |
of the configurations M (and M ′).

2. For each two places p and q, if there is a minimum cut of the flow graph with
vip in the outlet component and vfq in the inlet component, the pair (p, q) is
forbidden.

3. For each larger set of restrictions R′ ) R, either there is a pair (p, q) such

that the triple (p, p, q) ∈ R′ \ R, or there is exists a transition s
o−→ d and

triples (p, s, q), (p′, o, q′) /∈ R′ and (p, d, q) ∈ R′ \ R.
4. For each larger set of restrictions R′ ) R, either there is a pair (p, q) such

that the triple (p, q, q) ∈ R′ \ R, or there exist a transition s
o−→ d and triples

(p, d, q), (p′, o, q′) /∈ R′ and (p, s, q) ∈ R′ \ R.

Each of these conditions prohibits some property that can rule out reachability
or imply new restrictions. We give some intuition now, then prove formally in
Section 5.2 that in the case where M and M ′ are a no-near-miss pair, we can
build a realizable history from M to M ′ from a stable set of restrictions. Moreover
the history constructed will show that the set of restrictions cannot be extended.

We call the first two conditions flow-based stability conditions. The first
condition corresponds to the fact that if a restriction set leads to a flow graph
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with a maximum flow smaller than |M |, then there can be no realizable history
from M to M ′ consistent with such restrictions. The second condition uses the
fact that a minimum cut has the same value as a maximum flow, which has size
|M | by the first flow-based condition. Let (p, q) be a pair violating the condition.
A max flow f that uses the edge from vip to vfq can be decomposed into a sum

of two flows f1 and f2: f1 the flow with value 1 along path i− vip − vfq − o and
f2 = f − f1 which has value |M | − 1. Flow f1 uses two arcs of the minimum cut
thus yielding a contradiction by leaving a cut of capacity |M | − 2 to f2. This
contradicts existence of a maximum flow using the edge from vip to vfq and thus
the existence of a realizable history from M to M ′ with trajectories from p to q.

Example 8. Figure 5 illustrates a minimal cut on the flow graph G of Example 7
in which the path i → viR → vfP2 → o contains two arcs crossing the cut. The
restriction set is not stable and (R,P2) must be forbidden.

We call the last two conditions reachability-based stability conditions. They
rule out an inductive proof of a larger restriction set in the following sense. Given
a larger set R′ which violates one of these conditions, we will show by induction
on the step number that any realizable history deduced from R is also coherent
with R′, and thus we can replace R with the larger set R′.

5.2 Firing sequence construction

We show how to construct a firing sequence from a stable restriction set, possibly
reporting a near-miss instead. The proof that the near-miss reports are correct is
after the construction, in Section 5.3.

Given a flow graph G = (V,A, c), we define two operations on the capacity c
relative to a place pair (p, q) ∈ P 2 and an integer k > 0. Increasing c by k along
(p, q) consists in increasing c(i, vip) and c(vfq , o) by k. Decreasing c by k along

(p, q) consists in decreasing c(i, vip) and c(vfq , o) by k. This decreasing operation

is not possible if c(i, vip) or c(vfq , o) are smaller than k.

From stable restriction set to solution flow. Given a stable set of restrictions
with b allowed pairs (p, q), a solution flow is a result of the following procedure:
Construct the flow graph G. Decrease the capacity by |P | along each allowed
pair; if this step fails because some arc has insufficient capacity, terminate the
algorithm and report that M,M ′ is a near-miss pair. Otherwise, compute a
maximal flow. If it has value less than |M | − b × |P |, terminate the algorithm
and report that M,M ′ is a near-miss pair. Otherwise, increase its capacity by
|P | along each (allowed) pair.

Example 9. In our running example, consider a stable set of restrictions R
allowing only the triples (PE,PE,E), (PE,E,E), (R,R, P1), and (R,P1, P1).
This corresponds to a solution flow assigning the edges of the path i→ PE →
E → o the value 200 and the edges of the path i→ R→ P1→ o the value 400.

Observe that when a solution flow exists, it might not be unique. The algorithm
builds a firing sequence from the solution flow.
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From solution flow to firing sequence. Let R be a stable restriction set of the
algorithm, and let f be a corresponding solution flow. Intuitively, our construction
of the solution flow makes sure the flow has value at least |P | along each pair (p, q)
allowed by R. We use the reachability-based stability conditions to construct a
realizable history from this flow, such that for every pair (p, q) there are at most
f(vip, v

f
q ) trajectories from p to q.

We define three markings Mm,Mi and Mf . We denote A(p, q) the set of all
places r such that the triple (p, r, q) is allowed, i.e. (p, r, q) /∈ R. Let Mm be the
marking such that Mm(r) is equal to the cardinality of the set {(p, q)|r ∈ A(p, q)}
for all r. Let Mi be the marking such that Mi(p) =

∑
q |A(p, q)|. Note that as

|A(p, q)| ≤ |P | we have Mi(p) ≤ f(i, vip). Symmetrically, let Mf be the marking

such that Mf (q) =
∑
p |A(p, q)|; we have Mf (q) ≤ f(vfq , o). We are going to

construct a history from Mi to Mm and from Mm to Mf .

Example 10. In our running example with R, we obtain Mi = HPE,PE,R,RI,
Mf = HE,E, P1, P1I, and Mm = HPE,E,R, P1I.

We build a history from Mi to Mm with trajectories labeled by allowed pairs
(p, q) with many trajectories per pair. Each trajectory for pair (p, q) starts in
place p. The stability condition guarantees that we can extend some trajectory
to extend the set of places reached by trajectories labeled (p, q), until trajectories
of every pair have reached all allowed intermediate places r such that (p, r, q) is
allowed. For each reached place r some trajectory stays in r until the end of the
history. The history from Mm to Mf is built in a similar way but using backward
search from Mf . After combining the two histories into a history from Mi to Mf ,
we duplicate some trajectory for each pair of places until we have a history from
M to M ′. The construction consists of technical details and can be found in the
appendix.

Finally, we extract a firing sequence from the realizable history from M to
M ′ by associating a transition and an iteration count to each step of the history.
Each step with k trajectories going from ps to pd with ps 6= pd is associated to
a transition t iterated k times from ps to pd, where t realizes the step. This is
possible by realizability of the history.

5.3 Correctness given a stable restriction set

We prove that given a stable set of correct restrictions, the algorithm always
yields a correct answer in polynomial time. In case of a near-miss, both reporting
the near-miss and correctly resolving reachability is considered a correct answer.

A near miss is reported in two cases of the solution flow construction, the
second being more technical. We give a sketch of the proof, the technical details
are provided in the appendix.

Lemma 1. The near-miss reports are correct.

Proof (Sketch). We prove that the algorithm’s reports of near-misses are correct
for a net N , markings M,M ′ and a stable set of restrictions R. A near miss is
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reported in two cases. In the first case we cannot decrease some edge capacity by
|P |, after having attempted at most |P | − 1 decreases for this edge beforehand.
This corresponds to a place of M or M ′ having more than 0 but less than |P |2
tokens, which constitutes a near-miss.

In the second case after decreasing the capacity by |P | along each of the b
allowed pairs, there is some cut (VI , VO) with capacity less than |M |− b|P |. Each
decrease operation decreases the capacity of each cut at most by 2|P |, so the
original capacity of the cut is less than |M |+b|P |. On the other hand, it is strictly
more than |M |, as decreasing by |P | along some pair reduced the capacity by
more than |P |, which is impossible for any minimum cut by the second flow-based
stability condition. The sets X = VI ∩

{
vip|p ∈ P

}
and Y = VI ∩

{
vfp |p ∈ P

}
provide a near-miss.

If the algorithm does not report a near-miss, then it successfully constructs a
solution flow and reports that M ′ is reachable from M . A realizable history can
be constructed from the solution flow, proving that M can reach M ′. Moreover
the realizable history and then firing sequence from M to M ′ can be constructed
in polynomial time and are correct by construction.

Lemma 2. The algorithm runs in polynomial time given a stable set of restric-
tions.

The runtime analysis is straightforward, and can be found in the appendix.

5.4 Computing a stable restriction set

We show that there is a polynomial algorithm that either computes a stable
restriction set, or correctly reports unreachability. Starting with the empty set of
restrictions, the algorithm repeatedly finds violations of the stability conditions
and modifies the restriction set by adding some correct restrictions, or reports
unreachability. Once no violations can be found, the algorithm terminates. As the
total number of possible triples is |P |3, only a polynomial number of iterations
is needed. It remains to show that the violations as well as the corresponding
additional correct restrictions can be found in polynomial time.

First condition. A violation can be found by computing the maximum flow. Such
a violation immediately implies unreachability, since a realizable history induces
a maximum flow of value |M |.

Second condition. A violation can be found by considering all the allowed pairs
of places (p, q) and computing the maximum flow after decreasing the capacity
by one along (p, q). If the decrease is successful and the maximum flow is |M |− 2,
then (p, q) is a violating pair, as argued in the section with the flow-based stability
conditions. We add new correct restrictions by forbidding it. If the decrease yields
a maximum flow of |M | − 1 then this pair does not create a violation. If the
decrease is not possible, then we add new correct restrictions by forbidding
(p, q). Indeed if the decrease is not possible, then the capacity between i and
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vip (resp. between vfq and o) is zero. The pair (p, q) must be forbidden as there
is no realizable history in which a token goes from p to q. The pair provides a
violation of the condition by the cut which puts only vip and o into the outlet

component VO (resp., only vfq and i into the inlet component VI) and which is
minimal because it has capacity |M |.

Third and fourth condition. Checking for violations of reachability-based stability
conditions shares part of the approach used to construct a history out of a
solution flow. For the third condition, the algorithm enumerates upper bounds
on an extended set of restrictions R′ violating the condition. We start with R′
equal to all the triples. We observe that R′ cannot contain (p, p, q) for any pair
(p, q) such that (p, p, q) is not in R. We exclude such (p, p, q) from R′. Then as

long as there is a transition s
o−→ d and there are triples (p, s, q), (p′, o, q′) /∈ R′

and (p, d, q) ∈ R′ \ R, we exclude (p, d, q) from R′. If we end up proving that
R′ = R, there can be no violation.

Otherwise we prove that all the restrictions in R′ are correct and thus that
R is extendable. Indeed, by induction, any history satisfying the restrictions in
R on all steps must also satisfy the restrictions in R′.

The fourth condition is handled in a symmetric way.

Example 11. In our running example, starting from an empty restriction set, the
second condition reports violations because decreasing is not possible. It forbids
all the pairs but (PE,E),(PE,P1),(R,E),(R,P1). Checking violations of the
third condition forbids all triples except (PE,PE,E), (PE,E,E), (R,R, P1),
(R,P1, P1), (R,P2, P1). Checking the fourth condition additionally forbids
(R,P2, P1) leaving only four allowed triples (PE,PE,E), (PE,E,E), (R,R, P1),
(R,P1, P1). This set of restrictions is stable.

This procedure for constructing a stable set of restrictions, coupled with the
previous algorithm in which the stable set was part of the input, completes the
proof of Theorem 5.

6 Conclusion and future work

We have considered two restrictions of the IO net reachability problem with a
promise for much simpler verification for some applications and established the
reachability complexity in both these cases, which is NP-complete in one case
and polynomial in the other.

We leave the question of complexity of set-set reachability under these re-
strictions for future research. Another related question is defining a notion of
“approximate” reachability that would provide a reduction in complexity for IO
nets, as merely bounding the maximum difference between token counts or the
sum of differences preserves PSPACE-hardness of the reachability problem.

Acknowledgements. We wish to thank Javier Esparza for useful discussions.
We are also grateful to the anonymous reviewers for their advice regarding the
presentation.
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A First restriction: transition enabling

We provide the details of the firing sequence construction out of a flow.

Lemma 3. An integer flow of value |M | = |M ′| corresponds to a firing sequence
in N , provided N has a fixed set of enabled token moves.
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Proof. Let us consider such a flow f . It corresponds to a multiset θ of token
moves containing exactly f(p, q) token moves from p to q for every pair of places
p, q ∈ P . To prove existence of a firing sequence for each such multiset, we
consider the following (simple but inefficient) procedure, starting from M . We
repeatedly pick a token move from some p to some q from the multiset such that
p has more tokens in the current marking than in the final marking M ′. This is
possible because IO nets are conservative: if there is no such place p then the
current marking is equal to M ′ and we are done. We fire a transition of N with
source place p and destination place q, and remove the token move from the
multiset. The existence of such a transition, enabled in the current marking, is
given by the fact that the token move is enabled and so there exists a transition
of N from p to q whose observed place is marked.

We describe the reduction from SAT to the reachability problem for non-
forgetting IO nets.

Theorem 4. Reachability problem for non-forgetting IO nets is NP-hard.

Proof. NP-hardness of reachability is proved by a reduction from the SAT problem.
Consider a SAT instance represented as a circuit of binary “NAND” (¬(x ∧ y))
operations (any propositional formula can be converted into such form in linear
time). We construct a net with the following places.

– For each input xi of the SAT circuit we add places x⊥i , x0i , x
1
i . Informally,

marking these places corresponds to the input value being unknown, set to 0
and to 1 respectively.

– For each operation node nj , we add places n
(⊥,⊥)
j , n

(⊥,1)
j , n

(1,⊥)
j , n0j , n

1
j .

Informally, these places correspond to our knowledge about the inputs and
the output value of the node nj : we can know neither input, know that one
of the inputs is 1, or know the output value of the node being 0 or 1 (if one
output is 0, the node has the value 1 regardless of the other input).

The transitions are as follows.

– A token can move from a place x⊥i to either of the places x0i or x1i .

– A token in one of the places n
(⊥,⊥)
j , n

(⊥,1)
j , n

(1,⊥)
j can observe a token in p0k

or p1k where pk is an input to nj and move to the place corresponding to its
updated information about the arguments.

– Let no be the output operation node. Any token can observe a token in n1o
and perform any move that would be allowed by some observation (ensuring
the non-forgetting property), or move to n1o.

The initial marking puts one token into each x⊥i and n
(⊥,⊥)
j .

Such a net is a non-forgetting IO net, and it is easy to see that any execution
in this net from the initial marking corresponds to guessing some inputs and
evaluating the circuit. In particular, the marking with all the tokens in n1o is
reachable iff the circuit is satisfiable. This completes the proof.
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B Second restriction: token counts

Below are the omitted or sketched proofs for the polynomial algorithm for
reachability of no-near-miss pairs.

B.1 From solution flow to firing sequence

First we provide the details of the construction of a history from a solution flow.
We start with the history from Mi to Mm. We first produce an ordering of the

triples (p, r, q) not in R and not of the form (p, p, q), and associate a transition
to each of them using the first reachability-based stability condition satisfied by
our stable set R. We initialize R′ to be the set of triples (p, r, q) not in R and
not of the form (p, p, q). Note that the first reachability-based stability condition
ensures that for each allowed pair (p, q), the triple (p, p, q) is allowed.Indeed,
a restriction set additionally forbidding the pair (p, q) violates the condition.

While R 6= R′, we pick a transition s
o−→ d and triples (p, s, q), (p′, o, q′) /∈ R′

and (p, d, q) ∈ R′ \ R. We number (p, d, q), associate to it the transition s
o−→ d,

remove it from R′ and continue.
We say a place r′ is an initially-reachable child of place r for pair (p, q) if

(p, r′, q) was excluded from R′ because of some transition r
s−→ r′. The notion of

initially-reachable descendant is defined by transitive and reflexive closure over
the initially-reachable child relation.

We define the first step of the history from Mi to Mm to consist of trajectories
of length 1 such that there is exactly one trajectory in p for each triple (p, r, q)
such that r ∈ A(p, q). We label each trajectory with its triple (p, r, q). This first
step corresponds to the marking Mi. The idea is to extend each trajectory of Mi

labeled (p, r, q) from p until it reaches place r.
We construct the history by adding one step per triple in our ordering. At

each new step i+ 1, we maintain two things:

– If there is a trajectory τ with τ(i) = p then there is a trajectory τ ′ with
τ ′(i+ 1) = p, i.e. a place once marked by the history stays marked.

– If r̂ is the last place of a (p, r, q)-labeled trajectory, then r is an initially-
reachable descendant of place r̂ for pair (p, q), and (p, r̂, q) is the triple with
the largest number in the ordering such that this holds.

Initially this holds as p is an ancestor for all r ∈ A(p, q).
At each step, we pick the next triple (p, r′, q) in the ordering. It is associated

to a transition r̂
s−→ r′. For every place d which is a descendant of r′, we extend

trajectories labeled (p, d, q) with a step from r̂ to r′. The rest of the trajectories in
the history are extended with “horizontal” steps preserving their current places.
By construction, for some p′, q′ the triple (p′, s, q′) is earlier in the certificate, so
the history includes a trajectory having already reached the place s and still in s,
and so realizability is preserved. Eventually all the trajectories reach the place r of
their label (p, r, q). As a trajectory marked with (p, r, q) reaches r and stays there
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afterwards, the final marking puts in each place r exactly {(p, q) | r ∈ A(p, q)},
thus we reach the marking Mm.

We construct a realizable history from Mm to Mf in a symmetrical way. We
produce an ordering of the triples (p, r, q) not in R and not of the form (p, q, q),
and associate a transition to each of them using the second reachability-based
stability condition satisfied by our stable set R. We define the symmetric notions
of finally-reachable child and finally-reachable descendant. Then we construct
the trajectories of the history from Mm to Mf , working backwards from Mf on
trajectories labeled (p, r, q) from q until r.

We concatenate these two histories (identifying the trajectories labeled (p, r, q)
in them) to obtain a history from Mi to Mf with |A(p, q)| ≤ |P | ≤ f(vip, v

f
q )

trajectories from p to q. We pick an arbitrary trajectory from p to q and increase
its multiplicity in the multiset by f(vip, v

f
q )− |A(p, q)|. We do this until there are

f(vip, v
f
q ) trajectories for every pair of places (p, q). This provides a realizable

history from M to M ′. Realizability is preserved as the sets of steps at each
position in the history stay the same and only multiplicities change. Such changes
cannot create a violation of the realizability criterion.

PE

E

R

P1

P2

MmMi Mf

Fig. 6: A history obtained from a solution flow and a stable set of restrictions.
Bold trajectories are taken with multiplicities 199 and 399.

Example 12. In our running example, from the previously shown restrictions and
solution flow in Example 9, we can obtain the history illustrated in Figure 6 with
199 copies of trajectory PE,E,E,E,E, 1 copy of PE,PE, PE,E,E, 399 copies
of R,R, P1, P1, P1, and 1 copy of R,R,R,R, P1. Note that this history results
from a certain ordering, and that a different ordering provides a different history.

B.2 Correctness given a stable restriction set

Lemma 1. The near-miss reports are correct.

Proof. A near miss is reported in two cases. In the first case, the report arises
because decreasing capacity c of flow graph G = (V,A, c) by |P | along the b
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allowed pairs of R is impossible. In this case, M,M ′ is a near-miss pair as there
are less than |P |2 tokens in some marked place of M or M ′. This can be seen by
examining sets X = {p} and Y = ∅, or X = ∅ and Y = {p} in the definition of a
near-miss.

In the second case, the report arrises because decreasing capacity c of flow
graph G = (V,A, c) by |P | along the b allowed pairs of R leads to a maximum
flow value less than |M | − b × |P |. We call c′ the capacity post-decrease, and
note G′ = (V,A, c′). Equality of the minimum cut and the maximum flow gives
existence of a cut in G′ with capacity less than |M | − b × |P |. Consider such
a cut (VI , VO) of capacity κ′ < |M | − b × |P |. We write κ the capacity of cut
(VI , VO) in G before the decrease operation. Since the maximum flow, and thus
minimum cut, of G is |M |, we have κ ≥ |M |. Therefore there exists an allowed
pair (p, q) such that the arcs (i, vip) and (vfq , o) both cross the cut, as otherwise
κ′ ≥ |M | − b× |P |. Since the restriction set is stable, decreasing by 1 along any
allowed pair keeps any cut capacity in G bigger or equal to |M | − 1. Thus we
have κ > |M |. By structure of G and G′, the decreasing operation can reduce a
cut capacity by at most 2b× |P |. So κ− κ′ ≤ 2b|P |, and using the inequalities
above as well as the fact that there are at most b ≤ |P |2 allowed pairs, we get
|M | < κ < |M |+ |P |3.

Consider the following two vertex sets based on cut (VI , VO). Let X =
VI∩

{
vip|p ∈ P

}
and Y = VI∩

{
vfp |p ∈ P

}
. Our cut is finite, so only finite capacity

arcs cross it, namely the arcs from the inlet to vertices vip and from vertices vfp to
the outlet. The capacity in G of this cut is thus κ = M(P \X) +M ′(Y ). Since
|M | < κ < |M | + |P |3 and |M | = M(P ), we know 0 < M(P \ X) + M ′(Y ) −
M(P ) < |P |3. By set considerations M(P )−M(P \X) = M(X), and so finally
0 < M ′(Y )−M(X) < |P |3. The sets X,Y prove that M,M ′ are a near-miss.

Lemma 2. The algorithm runs in polynomial time given a stable set of restric-
tions.

Proof. First the algorithm computes a stable set of restrictions. To this end
it repeatedly finds violations of stability conditions and deduces additional
restrictions.

A check of flow-based stability conditions requires a computation of maxi-
mum flow in the flow graph corresponding to the current restriction set, then
one additional maximum flow computation for each allowed pair. A check of
reachability-based stability conditions can be performed by repeated enumer-
ation of possible combinations of three triples and verification of existence of
corresponding transitions. It is clear that both checks can be implemented in
polynomial time.

Each iteration either terminates the algorithm or adds at least one new
triple to the set of known correct restrictions. As the total number of triples
is polynomial and each iteration takes polynomial time, the total runtime of
computing a stable set is polynomial.

If a stable set of restrictions is found, a solution flow can be found by a
maximum flow algorithm, unless a near-miss is reported.



20 M. Raskin, C. Weil-Kennedy

If a near-miss is reported, a proof can be constructed either directly by
checking all the token counts, or by running a minimum cut algorithm.

If a solution flow is found, a history constructed contains two steps per allowed
triple, one in Mi to Mm and one in Mm to Mf . The numbering of triples for
each part can be built by enumerating combinations of three triples, then a pass
through the numbering is enough to build reachability child relations. One more
traversal of the numbering, adding one step to each trajectory at each step, is
enough to build the half-history.

To construct a firing sequence it suffices to enumerate all pairs of horizontal
and non-horizontal steps at each position in the history, and check all the
transitions for each pair. Note that identical steps of different trajectories need
not be considered separately.

We observe that all the steps can be performed in polynomial time.
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