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Abstract

The Collatz graph is a directed graph with natural number nodes and where there is an edge from
node x to node T (x) = T0(x) = x/2 if x is even, or to node T (x) = T1(x) = 3x+1

2
if x is odd.

Studying the Collatz graph in binary reveals complex message passing behaviors based on carry
propagation which seem to capture the essential dynamics and complexity of the Collatz process.
We study the set EPredk(x) that contains the binary expression of any ancestor y that reaches x

with a limited budget of k applications of T1. The set EPredk(x) is known to be regular, Shallit and
Wilson [EATCS 1992]. In this paper, we find that the structure of the Collatz graph naturally leads
to the construction of a regular expression, regk(x), which defines EPredk(x). Our construction, is
exponential in k which improves upon the doubly exponentially construction of Shallit and Wilson.
Furthermore, our result generalises Colussi’s work on the x = 1 case [TCS 2011] to any natural
number x, and gives mathematical and algorithmic1 tools for further exploration of the Collatz
graph in binary.
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1 Introduction

Let N = {0, 1, . . .}. The Collatz map, T : N → N, is defined by T (x) = T0(x) = x/2 if x

is even or T (x) = T1(x) = (3x + 1)/2 if x is odd. The Collatz graph is the directed graph

generated by T , nodes are all x ∈ N and arcs are (x, T (x)). This map, and its graph, have

been widely studied (see surveys [16] and [17]) and research has been driven by a problem,

open at least since the 60s: the Collatz conjecture. The conjecture states that, in the

Collatz graph, any strictly positive natural number is a predecessor of 1. In other words,

any x > 0 reaches 1 after a finite number of T -iterations. As of 2020, the Collatz conjecture

has been tested for all natural numbers below 268 without any counterexample found [1].

There has been a fruitful trend of studying the Collatz process in binary [2, 3, 20, 6,

12, 18, 4]. That is because, the maps T0 and T1 have natural binary interpretations. The

action of T0 corresponds to shifting the input’s binary representation to the right – deleting

1 Code available here: https://github.com/tcosmo/coreli
2 http://oeis.org/
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x
︷ ︸︸ ︷

101110011

+ 1011100111

1000101101
︸ ︷︷ ︸

T1(x)

0

(a) The sum 3x+1 in binary. The num-
ber x gets added to 2x + 1 which in bin-
ary is the left shift of x to which 1 is
added.

00̄1̄0̄1̄1̄100̄1̄1̄0̄

10001011010
(b) The sum 3x+1 interpreted as: “each bit of x sums
with its right neighbour and the neighbour’s potential
carry”. Carries are represented by dots. The +1 part
of the operation is embedded in a carry on a fictional
0 to the right of the rightmost 1 bit. The first step,
at the rightmost end, reads: 1 + 0̄ which produces an
ouput of 0 and transports the carry from to 1̄.

Figure 1 Two ways to interpret the operation 3x + 1 in binary, illustrated on the number x with
binary representation 101110011. The method shown in (b) highlights carry propagation.

a trailing 0. While writing T1(x) = (3x + 1)/2 = (x + (2x + 1))/2 reveals an interesting

mechanism. In binary, the operation x + (2x + 1) corresponds to adding x to its left-shifted

version where the least significant bit has been set to 1, Figure 1a. Equivalently x+ (2x+ 1)

corresponds to each bit of x being added to its right neighbour and the potential carry

being placed on that neighbour. The +1 part of the operation can be represented as a

carry appearing ex nihilo after the rightmost 1, Figure 1b. The described mechanism results

in the propagation of a carry within the binary representation of x: two consecutive 1s

create a carry while two consecutive 0s absorb an incoming carry. Representing trajectories

in the Collatz graph with the carry-annotated base 2 representation of Figure 1b leads to

complex, “Quasi Cellular Automaton” evolution diagrams which seem to encompass the

overall complexity of the Collatz process [5]. These cary-annoted evolution diagrams are

studied in depth in [21].

Here, we ask the following question: for a given bit string ω, what is the shape of the

bit strings which “degrade” into ω under the action of the Collatz process? Said otherwise,

for an arbitrary x, can we characterize the binary expansion of all y which reach x in the

Collatz process? To answer that question, we find that it is natural to put a budget on the

number of times the map T1 is used (see Remark 26) and we study EPredk(x) the set of

binary expressions of all y which reach x by using the map T1 exactly k times and the map

T0 an arbitrary number of times. There is a high-level argument which shows that for each

x and k the set EPredk(x) is regular [20]: the binary interpretation of the 3x + 1 operation

as shown in Figure 1b can be performed by a 4-state, reversible, Finite State Transducer

(which states correspond to symbols 0, 0̄, 1, 1̄). In [20], the authors make the point that

having a budget of k on the map T1 corresponds to iterating that transducer k times. Since

finite iterations of FSTs lead to regular languages, EPredk(x) is regular. However, while it

gives regular structure to the set EPredk(x), from the point of view of regular expressions,

their argument does not lead to a tractable representation of EPredk(x): they construct

exponentially large FSTs in k, leading to doubly exponentially large regular expressions

when using general purpose regular expression generation algorithm [11].

In this paper, we find that the knowledge about the binary structure of ancestors of x is

embedded in the geometry of finite paths that reach x in the Collatz graph. By geometry of a

path, we mean the parity vector [15, 23, 19, 22] associated to that path, which corresponds to

looking at the path’s elements modulo 2 (Figure 2). We find that there is a tight link between

the shape of the parity vector and the binary expression of the first element on the path,
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which is an ancestor of x. Hence, we focus on characterizing the shapes of parity vectors of

paths ending in x and then translate those shapes into binary expressions of ancestors. The

budget of k applications of the map T1 will translate to the constraint of having k 1s in the

parity vectors we consider. Our main result exploits the mapping between constrained parity

vectors and binary representation of ancestors at “T1-distance” k, in order to construct a

regular expression regk(x) which defines EPredk(x). As the number of possible shapes of

constrained parity vectors grows exponentially with k, these regular expressions are big3 but

only exponential in k (against doubly exponential in k in previous constructions [20]):

◮ Theorem 1. For all x ∈ N, for all k ∈ N there exists a regular expression regk(x) that

defines EPredk(x). The regular expression regk(x) is structured as a tree with 2k3k(k−1)/2

branches, alphabetic width O(2k3k(k+1)/2) and star height equal to 1.

Our result generalises [6] which focused on the case x = 1. We claim that the framework

we introduce is more general than [6, 12] and that, in potential future work, it could easily be

applied to generalisations of the Collatz map such as the Tq maps4 [9]. Our result improves

[20] by an exponential factor which makes our construction more fit for pratical use. We

have implemented the construction of Theorem 1 (see Appendix C) and claim that it gives

a new exploratory tool for studying the Collatz process in binary. Indeed, for any x and k,

we can sample regk(x) in order to analyse the different mechanisms by which the Collatz

process transforms an input string into the binary representation of x in k odd steps. Also,

from our result, one can also easily sample from regk(x) the smallest ancestor of x at T1-

distance k which suggests a new approach for future work in trying to understand how the

Collatz process optimally encodes the structure of x in ancestors at T1-distance k.

In future work, we plan to use our algorithm as a tool to further understand the dynamics

of the Collatz process in binary. In particular, we are very much concerned by the question:

“Can the Collatz process compute?”. Indeed, direct generalisations of the Collatz process are

known to have full Turing power [7, 13, 14]. While the Collatz conjecture, by characterizing

the long term behavior of any trajectory, seems to imply that there are some limitations on

the computational power of the Collatz process, nothing is known. We believe that further

studying carry propagation diagrams in the binary Collatz process can lead to answers on

the computational power of the Collatz process and that, the tools built in this article can

support that research.

2 Parity vectors and occurrences of parity vectors

Let N = {0, 1, . . .}. We recall that the Collatz map T : N→ N, is defined by T (x) = T0(x) =

x/2 if x is even or T (x) = T1(x) = (3x + 1)/2 if x is odd. The concept of parity vector was

introduced in [22] (under the name encoding vector) and used, for instance, in [15, 23, 19].

While we work with the same concept, we introduce a slightly different representation5 of

parity vectors by using arrows ↓ and← instead of bits 0 and 1. In this Section, we introduce

notation to manipulate occurrences of parity vectors in the Collatz graph and reformulate

a crucial result of [23] in our framework (Theorem 8).

3 Appendix D shows reg4(1) which gives an idea of how large the regular expressions get.
4 Defined, for q odd, by Tq(x) = x/2 if x is even or Tq(x) = qx + 1 if x is odd. These maps are as

mysterious as the Collatz map.
5 This is done both because, in this format, parity vectors can be represented nicely in the plane (see

Figure 2), and because binary strings will be omnipresent in Section 3 and we don’t want to confuse
the reader with too many of them.
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(a) Parity vectors p1 =←←↓ and p2 =←↓←←←↓.

358

4

137206

103
155233350

175

(b) An occurrence of p1 =←←↓ and an occurrence of p2 =←↓←←←↓.

Figure 2 Two parity vectors and one of their occurrences. In order to represent parity vectors,
we use arrows ↓ and ← instead of bits 0 and 1. When drawn in the plane, parity vectors read from
right to left, start at the red dot.

◮ Definition 2 (Parity Vector). A parity vector p is a word in {↓,←}∗, i.e. a finite word,

possibly empty, over the alphabet {↓,←}. We call P the set of all parity vectors. The

empty parity vector is ǫ. We define · to be the concatenation operation on parity vectors:

p = p1 · p2 is the parity vector consisting of the arrows of p1 followed by the arrows of p2.

We use exponentiation in its usual meaning: pn = p · p . . . · p, n times.

◮ Definition 3 (Norm and span). As in [23], we define two useful metrics on parity vectors:

(a) the norm of p, written ||p||, is the total number of arrows in p and (b) the span6 of p,

written l(p), is the number of arrows of type ← in p.

◮ Definition 4 (Occurrence of a parity vector). Let p = a0 · . . . · an−1 ∈ P be a parity vector

with ai ∈ {↓,←} and n = ||p||. An occurrence of p in the Collatz graph, or, for short, an

occurrence of p, is a (n + 1)-tuple, (o0, . . . , o||p||) ∈ N||p||+1 such that, for 0 ≤ i < ||p||,

oi+1 = T0(oi) if ai = ↓ or oi+1 = T1(oi) if ai =←.

◮ Definition 5 (Set of occurrences of a parity vector: α(p)). Let p ∈ P. We call α(p) the

set of all the occurrences of the parity vector p. We order this set by the first number of

each occurrence. Then, αi(p) ∈ N||p||+1 denotes the ith occurrence of p within that order

and αi,j(p), with 0 ≤ j ≤ ||p||, denotes the jth term of the ith occurrence. In order to

facilitate reading, we will write αi,−1(p) instead of αi,||p||(p) to refer to the last element of

the occurrence αi(p). If the context clearly states the parity vector p we will abuse notation

and write αi,j instead of αi,j(p).

◮ Example 6. Figure 2a shows two parity vectors in P : p1 = ←←↓ and p2 = ←↓←←←↓.

We have: ||p1|| = 3, l(p1) = 1 and ||p2|| = 6, l(p2) = 4. In Figure 2b, it can be proved that

we have α0(p1) = (3, 5, 8, 4) and α2(p2) = (137, 206, 103, 155, 233, 350, 175).

◮ Definition 7 (Feasibility). A parity vector p ∈ P is said to be feasible if it has at least one

occurrence, i.e. if α0(p) is defined.

The question “Are all parity vectors feasible?” is answered positively in [23] (Lemma 3.1).

This result is key to our work and we reformulate it in terms of occurrences of parity vectors:

◮ Theorem 8 (All parity vectors are feasible). Let p ∈ P. Then:

6 Called length in [23]. We change terminology to avoid confusion with the notion of length of a word
over an alphabet. However, we keep the same mathematical notation l(p).
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Figure 3 Illustration of Theorem 8. Structure of the set of occurrences of the parity vector
p = ←←↓←↓, we have l(p) = 3 and ||p|| = 5. For this parity vector p, we have α0,0 = 11 and
α0,−1 = 10. As we can see, α(p) has a simple arithmetical structure.

1. p is feasible i.e. α0 = (α0,0, . . . , α0,−1) ∈ N||p||+1 is defined

2. α0,0 < 2||p|| and α0,−1 < 3l(p)

3. Finally we can completely characterize αi,0 and αi,−1 with: αi,0 = 2||p||i + α0,0 and

αi,−1 = 3l(p)i + α0,−1

Proof. This Theorem is essentially a reformulation of Lemma 3.1 in [23]. We postpone the

proof to Appendix B because the concepts which the proof needs (introduced in [23]) will

not be used in the rest of this paper. ◭

◮ Example 9. Figure 3 illustrates the knowledge that Theorem 8 gives on the structure of

α(p), the set of occurrences7 of the parity vector p.

3 First occurrence of parity vectors

In this Section, we show that there is a direct link between the ||p|| arrows of a parity vector

p and the ||p|| bits of the binary representation – including potential leading 0s – of α0,0(p)

(Theorem 18). Then, we show that first occurrences of parity vectors can be arranged in a

remarkably symmetric binary tree: the (α0,−1)-tree (Theorem 22). As we work in binary,

let’s introduce some notation:

◮ Definition 10 (The set B∗). Let B∗ be the set of finite (possibly empty) words written on

the alphabet B = {0, 1}. The empty word, is denoted by η. We define •, the concatenation

operator on these words and we use exponentiation in its usual meaning. Finally, for ω ∈ B∗,

|ω| refers to the length (number of symbols) in the binary word ω.

◮ Definition 11 (The interpretations8 I and I−1
n ). Each word ω ∈ B∗ can, in a standard

way, be interpreted as the binary representation of a number in N. The function I : B∗ → N

gives this interpretation. By convention, I(η) = 0. Reciprocally, the partial function I−1
n :

N → B∗
n, where B∗

n is the set of ω ∈ B∗ with |ω| = n, gives the binary representation of

x ∈ N on n bits. The value of I−1
n (x) is defined only when n ≥ ⌊log2(2x + 1)⌋. We set

I−1
0 (0) = η. Finally, by I−1(x) we refer to the binary representation of x ∈ N without any

leading 0. Formally, I−1(x) = I−1
⌊log2(x)⌋+1(x) if x 6= 0 and I−1(0) = I−1

1 (0) = 0.

◮ Example 12. I(11) = I(0011) = 3, I−1(3) = I−1
2 (3) = 11 and I−1

7 (3) = 0000011.

7 The result of [19] implies that one can prove the Collatz conjecture by only proving it for αi,j(p) for
all i ∈ N, for any p ∈ P , for any 0 ≤ j ≤ ||p||.

8 We do not use the notation [[·]] and its inverse [[·]]−1 of [6, 12] in order to avoid confusion. Indeed, in
[6, 12], the use of this notation is meant to preserve leading 0s while we crucially need to control them
in order to define the encoding function E.
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η
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0

0

1
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00

0

01

1
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000

0

001
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26
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Figure 4 Illustration of Theorem 18. Parity vectors p in P0,P1,P2,P3 ordered by E(p), the
binary representation of α0,0(p) on ||p|| bits. The value of α0,−1 is given in decimal. Green arrows
are admissible, brown arrows are non admissible. For instance, the last arrow a = ↓ of p = ↓←↓ is
admissible because we read α0,−1(↓←) = 2 is even and a = ↓.

3.1 Constructing α0,0

Let’s notice that we have the following bijection (similarly introduced in [22]):

◮ Lemma 13. Define Pn = {p ∈ P with ||p|| = n}. Then the function f : Pn → {0, . . . , 2n−

1} defined by f(p) = α0,0(p) is a bijection.

Proof. By cardinality, because |Pn| = |{0, . . . , 2n − 1}| = 2n, we just have to prove the

injectivity of f . Let p1, p2 ∈ Pn such that f(p1) = f(p2). We write p1 = a0 · . . . · an−1

and p2 = a′
0 · . . . · a′

n−1 with ai, a′
i ∈ {↓,←}. Since α0,0(p1) = α0,0(p2) and that the Collatz

process is deterministic we deduce:

α0,0(p1) = α0,0(p2)

α0,1(p1) = α0,1(p2)

...

α0,−1(p1) = α0,−1(p2)

Thus, by Definition 4 we deduce that ai = a′
i for 0 ≤ i < n. Thus p1 = p2 which ends the

proof. ◭

We can now define the Collatz encoding of a parity vector p ∈ P :

◮ Definition 14 (Collatz encoding of a parity vector p). We define E : P → B∗ the Collatz

encoding function of parity vectors to be: E(p) = I−1
||p||(α0,0(p)). The function E is well

defined since, by Theorem 8, α0,0(p) < 2||p|| . By Lemma 13, E is bijective hence E−1 :

B∗ → P is naturally defined.

◮ Example 15. E(p) is the binary representation of α0,0(p) on ||p|| bits. We have: E(↓↓) = 00

or E(←↓↓) = 101 (see Figure 4).

◮ Definition 16 (Admissibility of an arrow). Let a ∈ {↓,←}. The arrow a is said to be

admissible for the number x if and only if: (a = ↓ and x is even) or (a =← and x is odd).
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◮ Lemma 17. Let p ∈ P and a ∈ {↓,←}. Consider α0(p ·a) = (α0,0(p ·a), . . . , α0,||p ·a||(p ·a)).

Then two cases:

If a is admissible for α0,−1(p) then (α0,0(p · a), . . . , α0,||p||(p · a)) is the first occurrence

of p, i.e. we have: α0(p) = (α0,0(p · a), . . . , α0,||p||(p · a)).

If a is not admissible for α0,−1(p) then (α0,0(p ·a), . . . , α0,||p||(p ·a)) is the second occur-

rence of p, i.e. we have: α1(p) = (α0,0(p · a), . . . , α0,||p||(p · a)).

Proof. If a is admissible for α0,−1(p) then p · a is forward feasible for α0,0(p) and

(α0,0(p), . . . , α0,−1(p), T (α0,−1(p))) is an occurrence of p · a. It has to be the first oc-

currence of p · a otherwise, the existence of a lower occurrence of p · a would contradict

the fact that α0(p) = (α0,0(p), . . . , α0,−1(p)) is the first occurrence of p.

If a is not admissible for α0,−1(p), consider α0(p·a) = (o0, . . . , o||p||+1) the first occurrence

of p ·a. Then (o0, . . . , o||p||) is an occurrence of p. It cannot be the first one since the first

occurrence of p is followed by an arrow admissible for α0,−1(p). However, by Theorem 8

we know that o0 = α0,0(p · a) < 2||p·a|| = 2||p||+1 = 2 ∗ 2||p||. Thus we conclude that

(o0, . . . , o||p||) is the second occurrence of p, i.e. o0 = α1,0(p) = 2||p|| + α0,0(p) since for

all i ≥ 2, αi,0(p) ≥ 2 ∗ 2||p|| by Theorem 8.

◭

◮ Theorem 18 (Recursive structure of E). Let n ∈ N. We have E(ǫ) = η. Then, for p ∈ Pn

and a ∈ {↓,←} we have E(p·a) = 0•E(p) if a is admissible for α0,−1(p) and E(p·a) = 1•E(p)

otherwise.

Proof. By Definition 14, we have E(ǫ) = I−1
0 (α0,0(ǫ)) = I−1

0 (0) and I−1
0 (0) = η by Defini-

tion 11. Hence, E(ǫ) = η. Now, let p ∈ Pn, a ∈ {↓,←}. Two cases:

If a is admissible for α0,−1(p), by Lemma 17 we have α0,0(p · a) = α0,0(p). Thus we get

that I−1
n+1(α0,0(p · a)) = 0 • I−1

n (α0,0(p)) since prepending a 0 to a binary string doesn’t

change the number it represents. Hence, E(p · a) = 0 • E(p).

If a is not admissible for α0,−1(p), by Lemma 17 and Theorem 8 we get α0,0(p · a) =

α1,0(p) = 2||p|| +α0,0(p) which corresponds to prepending a bit 1 to the binary represent-

ation of α0,0(p) on n bits. We conclude that I−1
n+1(α0,0(p · a)) = 1 • I−1

n (α0,0(p)). Hence,

E(p · a) = 1 • E(p).

◭

◮ Example 19. Figure 4 illustrates Theorem 18 on parity vectors of P0,P1,P2,P3.

3.2 Constructing α0,−1

Theorem 18 relies on knowing α0,−1 at each step in order to deduce the admissibility of

the arrow which is being added. In this Section, we show that α0,−1 can also be recursively

constructed. That construction will lead to a binary tree, the (α0,−1)-tree in which each node

corresponds to the first occurrence of a parity vector. The symmetries of this tree will be

crucial to our main result, Theorem 1. The construction of α0,−1 relies on some elementary

knowledge about groups of the form Z/3kZ and their multiplicative subgroup (Z/3kZ)∗. We

recall the definition and main properties of these objects in Appendix A. In particular, we

use the notation 2−1
k to refer to the modular inverse of 2 in Z/3kZ. Importantly, 2−1

k is a

primitive root of (Z/3kZ)∗. Those groups play an important role in our context because of

the following result:

◮ Lemma 20. Let p ∈ P. Then l(p) 6= 0⇔ α0,−1(p) ∈ (Z/3l(p)Z)∗. If l(p) = 0, α0,−1(p) =

0.
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Proof. We prove both directions: ⇒: we suppose l(p) 6= 0. We know α0,−1(p) < 3l(p)

(Theorem 8). We have to prove that α0,−1(p) is not a multiple of three. The predecessor

set of y, a multiple of 3, in the Collatz graph is reduced to {2ny for n ∈ N}. Indeed, we

know that all 2ny are predecessors of y by the operator T0. Furthermore, the operator

T −1
1 (y) = (2y − 1)/3 never yields to an integer if inputed a multiple of three and all 2ny

are. Hence no parity vector p with l(p) > 0 can have an occurrence ending in a multiple

of three and we have the result. ⇐: if l(p) = 0 then (Z/3l(p)Z)∗ = ∅ so we have the result.

If l(p) = 0 then p has the form p = (↓)n. By Theorem 18, we deduce α0,0(p) = 0. Hence

α0,−1(p) = T n(0) = 0. ◭

We can recursively construct α0,−1 with the analogous of T0 and T1 in Z/3kZ:

◮ Definition 21 (T0,k and T1,k). The functions T0,k : Z/3kZ→ Z/3kZ and T1,k : Z/3kZ→

Z/3kZ are defined by: T0,k(x) = 2−1
k x and T1,k(x) = 2−1

k (3x + 1).

◮ Theorem 22 (Recursive structure of α0,−1). Let n ∈ N. We have α0,−1(ǫ) = 0. Then,

for some p ∈ Pn and k = l(p) we have α0,−1(p · ↓) = T0,k(α0,−1(p)) and α0,−1(p · ←) =

T1,k+1(α0,−1(p)).

Proof. Since any x ∈ N is an occurrence of the parity vector ǫ, we have α0(ǫ) = (0, ) (tuple

with one element). Hence α0,−1(ǫ) = α0,||ǫ||(ǫ) = α0,0(ǫ) = 0. Now, let p ∈ Pn for some

n ∈ N and k = l(p). Then notice that Equations (??) and (??) are well defined because

of Theorem 8. Indeed, we know that α0,−1(p) < 3l(p) = 3k thus α0,−1(p) ∈ Z/3kZ and

α0,−1(p) ∈ Z/3k+1Z and we can use the operators T0,k and T0,k+1 on it.

Let’s consider α0,−1(p · a) with a ∈ {↓,←}. Two cases:

The arrow a is admissible for α0,−1(p): in that case, by Lemma 17, we know that

(α0,0(p · a), α0,1(p · a), . . . , α0,||p||(p · a)) is the first occurrence of p. Hence, α0,−1(p) =

α0,||p||(p · a) and we have α0,−1(p · a) = T (α0,||p||(p · a)) = T (α0,−1(p)) = Ti(α0,−1(p)).

With i = 0 if a = ↓ or i = 1 if a =←. Then two cases:

1. If a = ↓ then α0,−1(p) is even and α0,−1(p · a) = T0(α0,−1(p)) = T0,k(α0,−1(p)) by

Appendix A, Lemma 43.

2. If a =← then α0,−1(p) is odd and α0,−1(p · a) = T1(α0,−1(p)) = T1,k+1(α0,−1(p)) by

Appendix A, Lemma 44.

The arrow a is not admissible for α0,−1(p): in that case, by Lemma 17, we know

that (α0,0(p · a), α0,1(p · a), . . . , α0,||p||(p · a)) is the second occurrence of p. Hence,

by Theorem 8, α0,||p||(p · a) = 3k + α0,−1(p). Now, α0,−1(p · a) = T (α0,||p||(p · a)) =

T (3k + α0,−1(p)). Then two cases:

1. If a = ↓ then α0,−1(p) is odd and α0,−1(p · a) = T0(3k + α0,−1(p)) =
3k+α0,−1(p)

2 =

T0,k(α0,−1(p)) by Appendix A, Lemma 43.

2. If a =← then α0,−1(p) is even and α0,−1(p ·a) = T1(3k+α0,−1(p)) =
3k+1+3α0,−1(p)+1

2 =

T1,k(α0,−1(p)) by Appendix A, Lemma 44.

In all the cases we get the result. ◭

◮ Example 23. On Figure 4, we are reading α0,−1(↓←←) = 8. On the other hand,

Theorem 22 claims that α0,−1(↓←←) = T1,2(α0,−1(↓←)) = T1,2(2). Let’s verify that:

T1,2(2) = 2−1
2 (3 ∗ 2 + 1) = 3 + 2−1

2 = 3 + 32+1
2 = 3 + 5 = 8 as expected.
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(ǫ, 0, 0)∗

(←, 2, 1)⋆

(←←, 8, 2)

(←←←, 26, 3) (←←↓, 4, 2)

(←↓, 1, 1)

(←↓←, 2, 2) (←↓↓, 2, 1)⋆

(↓, 0, 0)∗

Figure 5 First 4 levels of the (α0,−1)-tree. Two symmetries are highlighted by ∗ and ⋆.

3.3 The (α0,−1)-tree

Theorem 22 implies that the operators T0,k and T1,k naturally give birth to a binary tree

ruling the construction of α0,−1. We call this tree the (α0,−1)-tree:

◮ Definition 24 (The (α0,−1)-tree). We call the (α0,−1)-tree the binary tree with nodes in

N ⊂ (P × N× N) constructed as follow, starting from node x = (ǫ, 0, 0):

1. The right child of (p, x, k) is ((p · ↓), T0,k(x), k)

2. The left child of (p, x, k) is given by ((p · ←), T1,k+1(x), k + 1)

◮ Lemma 25. Nodes of the (α0,−1)-tree are: N = {(p, α0,−1(p), l(p)) for p ∈ P}.

Proof. Each node of (α0,−1)-tree corresponds to a first occurrence, immediate from Defini-

tion 24 and Theorem 22. ◭

Symmetries of the (α0,−1)-tree

Figure 5 illustrates the first four levels of the (α0,−1)-tree. By construction of the (α0,−1)-

tree, if two nodes (p, x, k) and (p′, x, k) share the same x and k they will be the root of

very similar sub-trees. This phenomenon is highlighted with the nodes (ǫ, 0, 0) and (↓, 0, 0),

Figure 5 doesn’t show the sub-tree under (↓, 0, 0) as it can be entirely deduced from the sub-

tree under (ǫ, 0, 0). The same would apply for the sub-trees under (←, 2, 1) and (←↓↓, 2, 1).

These symmetries are closely related to the fact that keeping adding ↓ to a parity vector of

span k will periodically enumerate (Z/3kZ)∗ (Lemma 36).

4 Regular expressions defining ancestors sets

Pursuing our primary goal, we wish to characterize the binary expression of ancestors of an

arbitrary x in the Collatz graph. We decompose the set of all ancestors of x as the union on

k of sets Predk(x). The set Predk(x) contains all the ancestors of x which use the map T1

exactly k times in order to reach x – the map T0 can be used an arbitrary number of times.

◮ Remark 26. The set Predk(x) appears naturally in a fast-forwarded version of the Collatz

process where even steps are ignored and only odd steps are considered (see [6]). In the

graph of that process, Predk(x) corresponds to the set of ancestors of x at distance k.

Let’s start by noticing the following:

◮ Lemma 27. Let x ∈ N. If x is a multiple of 3 then: ∀k > 0, Predk(x) = ∅.
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Proof. More generally, if x is a multiple of three, the set of ancestors of x in the Collatz

graph is reduced to Pred0(x) = {2nx for n ∈ N}. Indeed, T −1
1 (x) = 2x−1

3 cannot be an

integer if x ≡ 0 mod 3 and x ≡ 0 mod 3⇒ ∀n ∈ N, 2nx ≡ 0 mod 3. ◭

◮ Remark 28. In fact, sets Predk(x) are infinite for all k as soon as x is not a multiple of 3.

Thanks to Section 3, we know that we can describe the binary expression of elements of

Predk(x) by focusing on parity vectors: the function E will translate parity vectors to the

binary expressions of ancestors. Let’s make that link formal:

◮ Definition 29 (EPredk(x)). Let x ∈ N and k ∈ N. We define the set EPredk(x) ⊂ B∗

to be: EPredk(x) = {ω • E(p) | p ∈ P such that α0,−1(p) = x mod 3k and l(p) = k}. With

ω = η if x < 3k or ω = I−1(i) otherwise, and i = ⌊ x
3k ⌋. By x mod 3k, we mean “the rest in

the Euclidean division of x by 3k”.

The set EPredk(x) constains binary representations of elements of Predk(x) – with potential

leading 0s – in a one-to-one correspondence:

◮ Lemma 30. Let x > 0 and k ∈ N. The sets EPredk(x) and Predk(x) are in bijection by

the function g : EPredk(x)→ Predk(x) defined by g(ω) = I(ω).

Proof. 1. The function g is well defined. Indeed, for any ω ∈ EPredk(x)

ω ∈ EPredk(x)⇔ ∃p ∈ P I(ω) = 2||p||i + I(E(p)) with α0,−1(p) = x mod 3k and l(p) = k

⇔ I(ω) = 2||p||i + α0,0(p)

⇔ I(ω) = αi,0(p) = g(ω) ∈ Predk(x)

With i = ⌊ x
3k ⌋.

2. The function g is injective. Let ω1, ω2 ∈ EPredk(x) with ω1 = ω•E(p1) and ω2 = ω•E(p2)

with ω = η if i = ⌊ x
3k ⌋ = 0 else ω = I−1(i). We have x = αi,−1(p1) = αi,−1(p2) by

hypothesis. Suppose g(ω1) = g(ω2). We get 2||p1||i + I(E(p1)) = 2||p2||i + I(E(p2)).

Hence, 2||p1||i + α0,0(p1) = 2||p2||i + α0,0(p2). By Theorem 8 we get αi,0(p1) = αi,0(p2).

If ||p1|| 6= ||p2||, for instance ||p1|| < ||p2|| we have p2 = p1 · (↓)||p2||−||p1||. Indeed, by

determinism of the Collatz process, p1 must be a prefix of p2 as they both are forward

feasible for y = αi,0(p1) = αi,0(p2). Furthermore, we can’t add any more arrows of type

← because l(p1) = l(p2). But, αi,−1(p1) = x 6= 0 thus αi,−1(p2) = x/(2||p2||−||p1||) 6= x

which contradicts αi,−1(p1) = αi,−1(p2). Hence we have ||p1|| = ||p2|| and thus p1 = p2

because, by determinism of the Collatz process, there is only one path of a given norm

between αi,0(p1) and αi,−1(p1) and thus one corresponding parity vector. Hence, ω1 =

ω2.

3. The function g is surjective. Let y ∈ Predk(x). There exists p ∈ P with αi,0 = y and

αi,−1 = x with i = ⌊ x
3k ⌋. Similarly to the proof of Point 1, the reader can verify that

E(p) ∈ EPredk(x) is a valid antecedent of y in the case i = 0 and that I−1(i) • E(p) ∈

EPredk(x) is a valid antecedent of y otherwise.

◭

Hence, in order to describe EPredk(x) we are concerned by characterizing parity vectors p

such that α0,−1(p) = x mod 3k and l(p) = k. Such p correspond to the symmetries that we

highlighted in the (α0,−1)-tree, they form an equivalence class of “k-span equivalence”:

◮ Definition 31 (k-span equivalence). Two parity vectors p1, p2 ∈ P are said to be k-span

equivalent if l(p1) = l(p2) = k and α0,−1(p1) = α0,−1(p2). We write p1 ≃k p2. Note that ≃k

is an equivalence relation.
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Figure 6 Illustration of Lemma 36. How the parity vector p =↓←← (in blue), with l(p) = 2,
distributes on the elements of (Z/32Z)∗. The first of occurrence of p is such that α0,−1 = 8 = 2−i0

2 =
2−3

2 . The parity vector p is k-span equivalent to the parity vector p′ =↓←← (↓)6 (in brown).

The following set of binary strings will play a central role in how we can describe k-span

equivalence classes:

◮ Definition 32 (Parity sequence of (Z/3kZ)∗). For k > 0, we define Πk ∈ B∗, the parity

sequence of (Z/3kZ)∗ as follows: Πk = b0 . . . bπk−1 with |Πk| = πk = |(Z/3kZ)∗| = 2 ∗ 3k−1

and, bπk−1−i = 0 if 2−i
k is even and bπk−1−i = 1 if 2−i

k is odd. By convention, we fix π0 = 1.

◮ Example 33. For k = 3, we have 2−1
3 = 14. The sequence of powers of 2−1

3 in (Z/3kZ)∗

is: [1, 14, 7, 17, 22, 11, 19, 23, 25, 26, 13, 20, 10, 5, 16, 8, 4, 2]. The associated parity sequence (0

when even and 1 when odd) is: 101101111010010000. Finally, Π3 is the mirror image of this:

Π3 = 000010010111101101. We have: Π1 = 01, Π2 = 000111, Π3 = 000010010111101101

and

Π4 = 000000110010100100010110000111111001101011011101001111.

◮ Remark 34. The strings Πk, or “seeds” in [6], have been studied in great depth in [18]. The

author find that their structure is extremely complex, that they have numerous properties

and that they can be defined in a lot of different ways. For instance, [12] uses the fact that

strings Πk correspond to the repetend of 1/3k in binary.

◮ Definition 35 (Rotation operator Ri(·)). Let ω ∈ B∗ with |ω| = n. Then, for 0 ≤ i < n,

Ri(ω) denotes the ith rotation (or circular shift) to the right of ω. For instance, we have

R2(000111) = 110001.

From any parity vector p, we can create an infinite family of distinct parity vectors which

are k-span equivalent to p:

◮ Lemma 36. Let p ∈ P and k = l(p) > 0. Define pn = p · (↓)nπk , i.e. the parity vector p

followed by nπk arrows of type ↓, where πk = |Πk|. Then, for all n ∈ N we have p ≃k pn.

Furthermore we can characterize α0,0(pn) through E(pn) with:

E(pn+1) = Ri0 (Πk) • E(pn)⇔ E(pn) = (Ri0 (Πk))n • E(p)

With 0 ≤ i0 < πk such that α0,−1(p) = 2−i0

k in (Z/3kZ)∗.

Proof. We have l(pn) = l(p) = k > 0. By Lemma 20, we know that α0,−1(p) ∈ (Z/3kZ)∗.

Furthermore, by Theorem 22, α0,−1(pn) = T nπk

0,k (α0,−1(p)) = (2−n
k )πk α0,−1(p) = 1∗α0,−1(p) =

α0,−1(p) since πk is the order of the group (Z/3kZ)∗. Hence we have pn ≃k p. Furthermore,

by Theorem 18 we know that E(pn+1) = ω • E(pn) with ω = b0 . . . bπk−1 ∈ B∗ with |ω| = πk

such that:

bπk−1−i =

{

0 if 2−i0−i
k is even

1 if 2−i0−i
k is odd



12

With 0 ≤ i0 < πk such that α0,−1(p) = 2−i0

k in (Z/3kZ)∗. By definition, the string ω =

b0 . . . bπk−1 is exactly Ri0 (Πk) and we have the result.

◭

◮ Remark 37. The result of Lemma 36 is illustrated in Figure 6. The parity vector p (in

blue) distributes in a “spiral" around the elements of (Z/3kZ)∗. When πk arrows of type ↓

have been added to p, a full “turn" has been done and we get a path k-span equivalent to p.

As a consequence, following only right children in the (α0,−1)-tree exhibits periods of length

πk which enumerate elements of (Z/3kZ)∗.

We now have all the element in order to characterize EPredk(x) using regular expressions:

◮ Theorem 1. For all x ∈ N, for all k ∈ N there exists a regular expression regk(x) that

defines EPredk(x). The regular expression regk(x) is structured as a tree with 2k3k(k−1)/2

branches, alphabetic width O(2k3k(k+1)/2) and star height equal to 1.

Proof. We are going to explicitly construct regk(x), a regular expression9 which defines

EPredk(x). With the following preliminary argument we show that it is enough to construct

regk(x) when x is not a multiple of 3 and x < 3k. In other words, when x ∈ (Z/3kZ)∗.

Preliminary Argument. Let x, k ∈ N. Suppose x is a multiple of 3. If k > 0, by

Lemma 27, EPredk(x) is empty and thus we can take regk(x) = ∅ in that case. If k = 0,

EPred0(x) = {ω•(0)n for n ∈ N} with ω = η if x = 0 or ω = I−1(x) otherwise (Definition 29

and Theorem 18). Hence we take reg0(0) = (0)∗ and reg0(x) = (I−1(x))(0)∗ for x > 0.

Suppose x is not a multiple of 3 and x ≥ 3k. Suppose that regk((x mod 3k)) exists,

i.e. that the set EPredk(x′) is regular with x′ = (x mod 3k). Then by Definition 29 we can

take regk(x) = (I−1(⌊ x
3k ⌋))(regk((x mod 3k))) in order to define EPredk(x). Indeed, by

Theorem 8, {p ∈ P |αi,−1(p) = x} = {p ∈ P |α0,−1 = (x mod 3k)} with i = ⌊ x
3k ⌋.

Hence we just have to prove that regk(x) exists for all x, non multiple of three such that

x < 3k, i.e. x ∈ (Z/3kZ)∗. We prove by induction on k the following result:

H(k) = “∀x ∈ (Z/3kZ)∗ there exists regk(x) which defines EPredk(x)”

Induction.

Base step k = 0. Trivially true because (Z/3kZ)∗ = ∅. Note that the following induction

step will rely on knowing reg0(0). We have shown above that reg0(0) = (0)∗.

Inductive step. Let k ∈ N such that H(k) holds. We show that H(k + 1) holds. Let

x ∈ (Z/3k+1Z)∗ and 0 ≤ i0 < πk+1 such that x = 2−i0

k+1. By Definition 29, in this case,

we have EPredk+1(x) = {E(p) | p ∈ P such that α0,−1(p) = x and l(p) = k + 1}. Hence,

characterizing EPredk+1(x) boils down to characterizing the (k + 1)-span equivalence class:

{p | p ∈ P such that α0,−1(p) = x and l(p) = k + 1} = {p | (p, x, k + 1) ∈ N} (Lemma 25).

Hence, we take p such that (p, x, k + 1) is in the (α0,−1)-tree and we analyse its struc-

ture. To do so, we consider the surrounding of p in the (α0,−1)-tree. This will lead us to

Equation (1) which relates E(p) to the induction hypothesis. We are going to deploy Points

1, 2, 3, in order to show that the node (p, x, k + 1) can always be expressed in the context

of Figure 7:

In order to prove the generality of this situation, three points:

9 The regular expressions we work with are defined by the following BNF:

reg := ∅ | (ω ∈ B∗) | (reg1|reg2) | (reg)∗ | (reg1)(reg2)

For instance, the expression (01)∗((00)|(11)) matches any word of the form (01)n00 or (01)n11. We
might omit some parenthesis when they are redundant.
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α0,−1−Tree

(p2, x2 = 2−i2

k , k)

(p1 = p2 · ←, x1 = T1,k+1(x2) = 2i1

k+1, k + 1)

(p′ = p2 · ← · (↓)
r, x = 2i0

k+1, k + 1)

(p = p′ · (↓)nπk+1 , x, k + 1)

Encodings

E(p2)

E(p1) = bi2 • E(p2) (see Point 3)

E(p′) = joini2
• E(p1) (see Point 2)

E(p) = (Ri0 (Πk+1))n • E(p′) (see Point 1)

Figure 7 Situation of the node (p, x, k + 1) is the (α0,−1)-tree. Each black dot is a node in the
(α0,−1)-tree. The solid edge reaches one left child while dashed edges represent variable numbers
of right children (see Definition 24). This Figure is to be read bottom to top together with Points
1,2,3.

1. Since l(p) = k + 1 ≥ 1 we can decompose p = p2 · ← · (↓)m with m ∈ N and p2 ∈ P

such that l(p2) = k. We can write m = nπk+1 + r with r < πk+1 and p = p2 · ← · (↓

)r · (↓)nπk+1 . We call the number n the repeating value. By Lemma 36, we know that

p ≃k+1 p2 · ← · (↓)r. Hence, with p′ = p2 · ← · (↓)r, we have α0,−1(p′) = α0,−1(p) = x

and E(p) = (Ri0 (Πk+1))n • E(p′). It remains to characterize E(p′) = E(p2 · ← · (↓)r) =

E(p1 · (↓)r) with p1 = p2 · ←.

2. Let’s consider now x1 = α0,−1(p2 · ←). By Theorem 22, we have x1 = T1,k+1(x2) =

T1,k+1(2−i2

k ). Furthermore, by the same Theorem 22, we have x = α0,−1(p′) = α0,−1(p1 · ↓r

) = T r
0,k+1(α0,−1(p2 · ←)) = T r

0,k+1(x1). Hence x = 2−r
k+1x1 and thus x1 = 2−i1

k+1 with

0 ≤ i1 = −i0 + r < πk+1. By Theorem 18, we deduce that: E(p′ = p1 · (↓)r) = ω • E(p1).

With ω = j0 . . . jr−1 ∈ B∗, |ω| = r, and jr−i =

{

0 if 2−i1−i
k+1 is even

1 if 2−i1−i
k+1 is odd

with 0 ≤ i < r.

We refer to such ω by joini2
because10 it is uniquely determined by i2 such that x1 =

T1,k+1(x2) = T1,k+1(2−i2

k ). Indeed, Lemma 44 shows that T1,k+1 is injective on Z/3kZ

hence i2 6= i′
2 ⇒ T1,k+1(2−i2

k ) 6= T1,k+1(2
−i′

2

k ). Different values of i2 will yield to different

x1 and thus different i1, r and joini2
.

3. Let’s consider x2 = α0,−1(p2). If k 6= 0, by Lemma 20, we know that x2 ∈ (Z/3kZ)∗

and we can write x2 = 2−i2

k with 0 ≤ i2 < πk. Note that if k = 0, by the same Lemma,

we have x2 = 0 = 20
0 by convention. Thus in all case we can write x2 = 2−i2

k with

0 ≤ i2 < πk. By Theorem 18, we deduce that E(p1) = bi2 • E(p2) where bi2 = 0 if ← is

admissble for x2 and bi2 = 1 otherwise. In other words: bi2 =

{

0 if 2−i2

k is odd

1 if 2−i2

k is even
.

Over all, from Points 1, 2, 3, we deduce that:

E(p) = (Ri0 (Πk+1))n • (joini2
) • (bi2 ) • E(p2) (1)

We have l(p2) = k. If k 6= 0, we will be able to reduce to the induction hypothesis since

x2 ∈ (Z/3kZ)∗. If k = 0 we have x2 = 0 and we use reg0(0) previously constructed.

10 The name join refers to the fact that this parity sequence ω arises from “joining”, in the (α0,−1)-tree,
x1 = 2i1

k+1
to x = 2i0

k+1
with r = i0 − i1 ≥ 0 arrows of type ↓. Notice that we can have joini2

= η in
the case where r = 0.



14

As a synthesis, notice that any value of 0 ≤ i2 < πk, any node (p2, x2 = 2i2

k , k) and any

repeating value n ∈ N will lead to the construction of a (p, x, k + 1) with a different p for

each choice of i2, p2 and n. Hence, we have completely characterized the structure of nodes

of the form (p, x, k + 1). From the above analysis, we can deduce the recursive expression

of regk+1(x), we have:

regk+1(x) = (Ri0 (Πk+1))∗( (join0) (b0) (regk(2−0
k )) |

(join1) (b1) (regk(2−1
k )) |

(join2) (b2) (regk(2−2
k )) |

...

(joinπk−1) (bπk−1) (regk(2
−(πk−1)
k )) ) (2)

Note the amusing fact that for k > 0 the word bπk−1bπk−2 . . . b0 is the binary com-

plement of Πk. The fact that regk(x) is structured as a tree is made obvious by Equa-

tion (2), at each level l ≤ k the branching factor is πl. The number of branches is given

by
∏k

l=0 πk = 2k3
k(k−1)

2 . The number of {0, 1} symbols on each branch is bounded by

2
∑k

l=0 πk = O(3k), hence, the alphabetic width of regk(x) which is the total number of

{0, 1} symbols is O(2k3
k(k+1)

2 ). Finally, the star heightt11[11] is 1 as directly derived from

(2). ◭

◮ Remark 38. We remark that the number of branches of regk(x) corresponds to the size of

“Level k + 1” that was computed in [10]. The author of [10] also remarks that this number

corresponds to the number of different antisymmetric binary relations on a set of k + 1

labeled points [8].

◮ Remark 39. The Collatz conjecture is equivalent to: for all x, there is k such that x ∈

Predk(1). Which means: for all x, there is k and n such that regk(1) matches 0nI−1(x).

Because the number of leading 0s in Πk is equal to ⌊k · ln(3)/ln(2)⌋ (see [18]), we can bound

the number of leading 0s that is accepted by regk(1) and so we can bound n which is the

number 0s to prepend to I−1(x). For instance n < (k + 1)2 is a bound that works.

◮ Example 40. We implemented the construction of regk(x) in a Python library named

coreli (see Appendix C). Let’s consider reg3(14) which defines the binary expression of

any y that reaches 14 in 3 odd steps. Below are enumerated the 12 branches of reg3(14).

They all start with the term (100001001011110110)∗ (corresponds to Ri0 (Π3)∗ in the proof

of Theorem 1) which is omitted for readibility:

1. 100(000111)∗00(01)∗01(0)∗ 7. 100(000111)∗0001(10)∗1(0)∗

2. 10000(100011)∗100(01)∗01(0)∗ 8. 10000(100011)∗10001(10)∗1(0)∗

3. 100001001011110(110001)∗1100(01)∗01(0)∗ 9. 100001001011110(110001)∗110001(10)∗1(0)∗

4. 10000100101(111000)∗11100(01)∗01(0)∗ 10. 10000100101(111000)∗1(10)∗1(0)∗

5. 100001001(011100)∗011100(01)∗01(0)∗ 11. 100001001(011100)∗01(10)∗1(0)∗

6. 10000100101111011(001110)∗0(01)∗01(0)∗ 12. 10000100101111011(001110)∗001(10)∗1(0)∗

11 The star height metric height is defined by height(s) = 0 for s ∈ {∅, ǫ, 0, 1}, height(s1|s2) =
height(s1s2) = max(height(s1), height(s2)) and height(s∗) = height(s) + 1.
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Any number of which binary expression matches one of the 12 branch will iterate, in 3

odd steps, to 1110, the binary representation of 14. One can notice that both columns are

enumerating, in the same order, all rotations of the word (000111) in the left-most Kleene

star. First column corresponds to rotation (01) of the second Kleene star and second column

corresponds to rotation (10). Also, in each column, the bold substring between the first and

the second Kleene star is growing a pattern, 011100 starting on branch 6 on the first column

and 110001 starting on branch 10 on the second column.

Let’s look at the Collatz iterations (until they reach 1110) of y1 = 10000(100011)3100(01)01

which is a member of branch 2 and y2 = (100001001011110110)10000100101(111000)211

which is a member of branch 10:

y1 = 100001000111000111000111000101 y2 = 1000010010111101101000010010111100011

110001101010101010101010101000 1100011100011100011100011100011010101

1001010100000000000000000000 10010101010101010101010101010101000000

11100000 111000000000000000000000000000000

Because they are both in EPred3(14) both strings y1 and y2 reach 1110 by using three

odd steps (three applications of the map T1). We display even steps without breaking a

line, the Collatz process is ignoring all ending 0s until it finds a 1. Ending 0s are generated

by the ending pattern ...010101. Inner patterns within y1 and y2 seem to synchronize in

order to generate ending ...010101 patterns in future iterations and finally produce 1110.

We believe that each branch of reg3(14) features a different “mechanism” that the Collatz

process has in order to synchronize inner patterns so that they produce 1110 after 3 odd

steps. We leave as future work to understand those mechanisms which we believe are tightly

connected to how carry propagates within y1, y2 and their Collatz descendants. We believe

that the construction developed in this paper will provide a robust exploratory tool in order

to support that future research.
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A Working with Z/3kZ

In this Appendix, we recall the definition and main properties of groups Z/3kZ and (Z/3kZ)∗.

Then, we proof two results on T0,k and T1,k (Definition 41) which are used in the proof of

Theorem 22.

For k > 0, we identify Z/3kZ to {0, . . . , 3k − 1} ⊂ N. Thus we implicitly have x ∈

Z/3kZ⇒ x < 3k. By (Z/3kZ)∗ we refer to the multiplicative group of Z/3kZ, i.e. (Z/3kZ)∗ =

{x ∈ Z/3kZ | ∃y , xy ≡ 1 mod 3k}. From elementary group theory results we can deduce

that (Z/3kZ)∗ = {x | x < 3k and x is not a multiple of 3}. The element 2 is thus always

invertible in Z/3kZ. By 2−1
k we refer to the modular inverse of 2 in Z/3kZ, this means that in

Z/3kZ we have 2∗2−1
k = 1. Furthermore, it is known that 2−1

k is a primitive root of (Z/3kZ)∗.

This means that for all x ∈ (Z/3kZ)∗ there exists n ∈ N such that x ≡ (2−1
k )n = 2−n

k mod 3k.

Finally, even though (Z/30Z)∗ = ∅ it will be useful, for the induction step of our main result

(Theorem 1), to take the convention (2−1
0 )0 = 20

0 = 0.

We define T0,k and T1,k the analogous versions of T0 and T1 in Z/3kZ.

◮ Definition 41 (T0,k and T1,k). The functions T0,k : Z/3kZ→ Z/3kZ and T1,k : Z/3kZ→

Z/3kZ are defined by: T0,k(x) = 2−1
k x and T1,k(x) = 2−1

k (3x + 1).

◮ Lemma 42 (Expression of 2−1
k ). We have: 2−1

k = 3k+1
2 .

Proof. Let zk = 3k+1
2 ∈ N. We have zk < 3k thus zk ∈ Z/3kZ. We also have, 2zk = 3k +1 ≡

1 mod 3k. Hence zk meets all the requirements to be 2−1
k . ◭

◮ Lemma 43 (Structure of T0,k). Let k ∈ N. For x ∈ Z/3kZ we have:

T0,k(x) =

{

x/2 = T0(x) if x is even

(3k + x)/2 if x is odd

Proof. Let x ∈ Z/3kZ, we have x < 3k. Two cases:

Case x even. We have x/2 < 3k and 2 ∗ (x/2) = x. This shows that x/2 = 2−1
k x and

thus T0,k(x) = x/2 for x even.

Case x odd. We have 2−1
k x ≡ 3k+1

2 x mod 3k by Lemma 42. Because x = 2y + 1, we

have 2−1
k x ≡ 3k+1

2 (2y + 1) ≡ y + 3k+1
2 ≡ 3k+2y+1

2 ≡ (3k + x)/2 mod 3k. We also have

(3k + x)/2 < 3k thus, in Z/3kZ, 2−1
k x = 3k+x

2 and T0,k(x) = (3k + x)/2.

◭

◮ Lemma 44 (Structure of T1,k). Let k ∈ N. The function T1,k+1 is 3k-periodic. Hence we

simply have to characterize the behavior of T1,k+1 on Z/3kZ. For x ∈ Z/3kZ we have:

T1,k+1(x) =

{

(3k + 3x + 1)/2 if x is even

(3x + 1)/2 = T1(x) if x is odd

Proof. For x ∈ Z/3kZ we have: T1,k+1(x + 3k) = 2−1
k+1(3k+1 + 3x + 1) ≡ 2−1

k+1(3x +

1) mod 3k+1. Thus the function T1,k+1 is 3k-periodic. Now, two cases:

Case x odd. We have (3x + 1)/2 < 3k+1 and 2 ∗ ((3x + 1)/2) = 3x + 1. This shows that

(3x + 1)/2 = 2−1
k+1(3x + 1) and thus T1,k+1(x) = (3x + 1)/2 for x odd.

Case x even. We have x = 2y and 2−1
k+1(3 ∗ 2y + 1) ≡ 3y + 2−1

k+1 mod 3k. We have

3y+2−1
k+1 = 3y+ 3k+1

2 = (3k+3x+1)/2 by Lemma 42. Furthermore, (3k+3x+1)/2 < 3k+1

so we can conclude that T1,k+1(x) = (3k + 3x + 1)/2 when x is even.

◭
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B Feasible Vectors

In this Section we present the formalism used in [23] in order to prove Theorem 8.

These results are based on a compact representation of parity vectors called feasible

vectors in [23]:

◮ Definition 45 (Feasible vectors). The set of feasible vectors is F = ∪∞
k=0N

k+1. For a

feasible vector s = (s0, . . . , sk) ∈ F , the length of s, written l(s) is k. The norm of s is

||s|| = l(s) +
∑l(s)

i=0 si.

◮ Example 46. A feasible vector is a compact way to represent a parity vector. For instance,

the parity vector p = ↓←↓↓↓←←↓↓ = (↓)1 ← (↓)3 ← (↓)0 ← (↓)2. Will be represented by

the feasible vector s = (1, 3, 0, 2). We have ||p|| = ||s|| and l(p) = l(s).

◮ Definition 47 (Backtracing Function). Let s = (s0, . . . , sk) ∈ F , the backtracing function

of s is vs : N→ Q defined by:

vs(x) = T −s0
0 ◦ T −1

1 ◦ T −s1
0 ◦ . . . T −1

1 ◦ T −sk

0

If vs(x) ∈ N then we say that s is backward feasible for x.

◮ Lemma 48 (Lemma 2.17 in [23]). Let s ∈ F and x ∈ N such that s is backward feasible

for x. Then we have: T ||s||(vs(x)) = x.

◮ Example 49. For p3 = (↓)3 ← (↓)0, we have the corresponding feasible vector s = (3, 0).

Being a composition of affine functions, vs is affine. The author of [23] completely

characterises the structure of vs:

◮ Lemma 50 (Lemma 2.13 in [23]). For s = (s0, . . . , sk) ∈ F define:

c(s) =
2||s||

3l(s)
and r(s) =

k−1∑

j=0

2j+s0+···+sj

3j+1

Then for any x ∈ N we have: vs(x) = c(s)x − r(s).

Finally the following lemma of [23] will essentially give the proof of Theorem 8:

◮ Lemma 51 (Lemma 3.1 in [23]). Let s ∈ F . Then there is exactly one a < 3l(s) such that

for any b ∈ N:

s is backward feasible for b⇔ b ≡ a mod 3l(s)

Proof. We know that: s is backward feasible for b ⇔ vs(b) ∈ N. Lemma 50 gives: vs(b) =

c(s)b− r(s) = 1
3l(s)

(
2||s||b− 3l(s)r(s)

)
. Hence, with d = 3l(s)r(s) ∈ N:

s is backward feasible for b⇔ b ≡ 2−||s||d mod 3l(s)

Because 2||s|| is inversible in Z/3l(s)Z.

◭

Finally we can prove Theorem 8:

◮ Theorem 8 (All parity vectors are feasible). Let p ∈ P. Then:
1. p is feasible i.e. α0 = (α0,0, . . . , α0,−1) ∈ N||p||+1 is defined

2. α0,0 < 2||p|| and α0,−1 < 3l(p)
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3. Finally we can completely characterize αi,0 and αi,−1 with: αi,0 = 2||p||i + α0,0 and

αi,−1 = 3l(p)i + α0,−1

Proof. Let p ∈ P and s his associated feasible vector. By Lemma 51, we deduce that Point 1

holds with the existence of α0,−1 < 3l(p). From the same Lemma, we get αi,0 = 2||p||i + α0,0.

From Lemma 50 we get: αi,0 = vs(αi,−1) = vs(3l(p)i+α0,−1) = 2||s||i+vs(α0,0) = 2||s||i+α0,0.

Finally, the bound α0,0 < 2||p|| can also be derived from Lemma 50: α0,0 = vs(α0,−1) =
2||s||

3l(s) α0,−1 − r(s) < 2||s|| since r(s) ≥ 0 and 2||s|| = 2||p||. ◭

C Generating regk(x) with coreli

We have implemented the construction of Theorem 1 in a Python library named coreli12,

the Collatz Research Library: https://github.com/tcosmo/coreli. The long term goal

of this library is to provide tools for exploring the Collatz process and also to implement

constructions of past, current and future research on the Collatz problem. The library is

fully documented here: https://dna.hamilton.ie/tsterin/coreli/docs/.

The construction of regk(x) is performed in the following script: https://github.com/tcosmo/coreli/blob/master/coreli/predecessors.py.

You’ll find a detailed example (following Example 40) that will run you through the code’s

features in this notebook: https://github.com/tcosmo/coreli/blob/master/examples/Binary%20expression%20of%20ancestors%20in%20the%20Collatz%20graph.ipynb.

D reg
4
(1)

The following is the regular expression which defines EPred4(1), i.e. it recognises the binary

representation – with potential leading 0s – of any number y that uses 4 times the operator

T1 and any number of times the operator T0 in order to reach 1 in the Collatz process.

Although we only have k = 4, the regular expression reg4(1) is big: it is a tree with 11664

branches.

reg4(1) =

(000000110010100100010110000111111001101011011101001111)*(((0)(0)((000010010

111101101)*(((0)(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)

*((()(1)((0)*))))))))|((000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|(

(1000)(1)((10)*((()(1)((0)*))))))))|((0000100101111)(0)((110001)*(((110)(0)(

(01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*))))))))|((000010010)(1

)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()(1)((0)*)))))

)))|((0000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)

*((()(1)((0)*))))))))|((000010010111101)(1)((001110)*((()(0)((01)*(((0)(1)((

0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((000000110010100100010)(1)((

100001001011110110)*(((10)(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((00

0)(1)((10)*((()(1)((0)*))))))))|((1000)(0)((100011)*(((10)(0)((01)*(((0)(1)(

(0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((10000100101111)(0)((110001)

*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*))))))))|((

1000010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()

(1)((0)*))))))))|((10000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*))))

)|((0)(1)((10)*((()(1)((0)*))))))))|((1000010010111101)(1)((001110)*((()(0)(

12 Any similarity to Archangelo Corelli is purely coincidental, https://www.youtube.com/watch?v=5BPhkY6xIP8

https://github.com/tcosmo/coreli
https://dna.hamilton.ie/tsterin/coreli/docs/
https://github.com/tcosmo/coreli/blob/master/coreli/predecessors.py
https://github.com/tcosmo/coreli/blob/master/examples/Binary%20expression%20of%20ancestors%20in%20the%20Collatz%20graph.ipynb
https://www.youtube.com/watch?v=5BPhkY6xIP8
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(01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((000000110010

1)(0)((010000100101111011)*(((010)(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*))

)))|((000)(1)((10)*((()(1)((0)*))))))))|((01000)(0)((100011)*(((10)(0)((01)*

(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((010000100101111)(0

)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*)

)))))))|((01000010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1

)((10)*((()(1)((0)*))))))))|((010000100)(1)((011100)*(((01110)(0)((01)*(((0)

(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|((01000010010111101)(1)((001

110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|(

(000000110)(0)((101000010010111101)*(((1010)(0)((000111)*(((0)(0)((01)*(((0)

(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((101000)(0)((100011)*(((1

0)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((1010000

100101111)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*(

(()(1)((0)*))))))))|((101000010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0

)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((1010000100)(1)((011100)*(((01110)

(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|(()(1)((001110

)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((00

00001100101001000101100001111110011010110)(1)((110100001001011110)*(((11010)

(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*)))

)))))|((1101000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((1

0)*((()(1)((0)*))))))))|((11010000100101111)(0)((110001)*(((110)(0)((01)*(((

0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*))))))))|((1101000010010)(1)((1

11000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()(1)((0)*))))))))|

((11010000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)

*((()(1)((0)*))))))))|((1)(1)((001110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)

(1)((10)*((()(1)((0)*)))))))))))|((000000110010100100010110000111111)(0)((01

1010000100101111)*(((011010)(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((

000)(1)((10)*((()(1)((0)*))))))))|((01101000)(0)((100011)*(((10)(0)((01)*(((

0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|(()(0)((110001)*(((110)

(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*))))))))|((01101000

010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()(1)(

(0)*))))))))|((011010000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*))))

)|((0)(1)((10)*((()(1)((0)*))))))))|((01)(1)((001110)*((()(0)((01)*(((0)(1)(

(0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((00000011001010010001011000

01111110011)(0)((101101000010010111)*(((1011010)(0)((000111)*(((0)(0)((01)*(

((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((101101000)(0)((10001

1)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((

1)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((

0)*))))))))|((101101000010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))

))|(()(1)((10)*((()(1)((0)*))))))))|((1011010000100)(1)((011100)*(((01110)(0

)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|((101)(1)((00111

0)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((0

00000110010100100010110000111111001101)(0)((110110100001001011)*(((11011010)

(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*)))

)))))|((1101101000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)

((10)*((()(1)((0)*))))))))|((11)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*))

)))|((11000)(1)((10)*((()(1)((0)*))))))))|((1101101000010010)(1)((111000)*((

(1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((1101101
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0000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(

1)((0)*))))))))|((1101)(1)((001110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)

((10)*((()(1)((0)*)))))))))))|((00000011001010010001011000011111100110101101

11010)(0)((111011010000100101)*(((111011010)(0)((000111)*(((0)(0)((01)*(((0)

(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((11101101000)(0)((100011)

*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((11

1)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((

0)*))))))))|((11101101000010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)

))))|(()(1)((10)*((()(1)((0)*))))))))|((111011010000100)(1)((011100)*(((0111

0)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|((11101)(1)(

(001110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))

))|((000000110010100100010110000)(1)((111101101000010010)*(((1111011010)(0)(

(000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*)))))))

)|((111101101000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((

10)*((()(1)((0)*))))))))|((1111)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*))

)))|((11000)(1)((10)*((()(1)((0)*))))))))|(()(1)((111000)*(((1110)(0)((01)*(

((0)(1)((0)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((1111011010000100)(1)((0

11100)*(((01110)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*)))))))

)|((111101)(1)((001110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1

)((0)*)))))))))))|((0000001100101001000101100)(0)((011110110100001001)*(((01

111011010)(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(

1)((0)*))))))))|((0111101101000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))

))|((1000)(1)((10)*((()(1)((0)*))))))))|((01111)(0)((110001)*(((110)(0)((01)

*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*))))))))|((0)(1)((111000)*(

((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((011110

11010000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*(

(()(1)((0)*))))))))|((0111101)(1)((001110)*((()(0)((01)*(((0)(1)((0)*)))))|(

(00)(1)((10)*((()(1)((0)*)))))))))))|((0000001100101001000101100001111110011

01011011101001)(1)((101111011010000100)*(((101111011010)(0)((000111)*(((0)(0

)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((101111011010

00)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0

)*))))))))|((101111)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)

(1)((10)*((()(1)((0)*))))))))|((10)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0

)*)))))|(()(1)((10)*((()(1)((0)*))))))))|(()(1)((011100)*(((01110)(0)((01)*(

((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|((10111101)(1)((001110)*

((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((0000

001100101001000)(1)((010111101101000010)*(((0101111011010)(0)((000111)*(((0)

(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((0101111011

01000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)

((0)*))))))))|((0101111)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11

000)(1)((10)*((()(1)((0)*))))))))|((010)(1)((111000)*(((1110)(0)((01)*(((0)(

1)((0)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((0)(1)((011100)*(((01110)(0)(

(01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|((010111101)(1)((0

01110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))

|((000)(0)((001011110110100001)*(((00101111011010)(0)((000111)*(((0)(0)((01)

*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((0010111101101000)(

0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))

))))))|((00101111)(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1
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)((10)*((()(1)((0)*))))))))|((0010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0

)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((00)(1)((011100)*(((01110)(0)((01)

*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*))))))))|((0010111101)(1)((0011

10)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((

0000001100101001000101100001111)(1)((100101111011010000)*(((100101111011010)

(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*)))

)))))|((10010111101101000)(0)((100011)*(((10)(0)((01)*(((0)(1)((0)*)))))|((1

000)(1)((10)*((()(1)((0)*))))))))|((100101111)(0)((110001)*(((110)(0)((01)*(

((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*))))))))|((10010)(1)((111000)

*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((()(1)((0)*))))))))|((100)

(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*)))))|((0)(1)((10)*((()(1)((0)*)

)))))))|((10010111101)(1)((001110)*((()(0)((01)*(((0)(1)((0)*)))))|((00)(1)(

(10)*((()(1)((0)*)))))))))))|((000000110010100100010110000111111001101011011

)(1)((010010111101101000)*(((0100101111011010)(0)((000111)*(((0)(0)((01)*(((

0)(1)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|(()(0)((100011)*(((10)(0

)((01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((0100101111)

(0)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)

*))))))))|((010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((

10)*((()(1)((0)*))))))))|((0100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*

)))))|((0)(1)((10)*((()(1)((0)*))))))))|((010010111101)(1)((001110)*((()(0)(

(01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((0000001)(1)(

(001001011110110100)*(((00100101111011010)(0)((000111)*(((0)(0)((01)*(((0)(1

)((0)*)))))|((000)(1)((10)*((()(1)((0)*))))))))|((0)(0)((100011)*(((10)(0)((

01)*(((0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((00100101111)(0

)((110001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*)

)))))))|((0010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((1

0)*((()(1)((0)*))))))))|((00100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*

)))))|((0)(1)((10)*((()(1)((0)*))))))))|((0010010111101)(1)((001110)*((()(0)

((01)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*)))))))))))|((00000011001

0100)(1)((000100101111011010)*((()(0)((000111)*(((0)(0)((01)*(((0)(1)((0)*))

)))|((000)(1)((10)*((()(1)((0)*))))))))|((00)(0)((100011)*(((10)(0)((01)*(((

0)(1)((0)*)))))|((1000)(1)((10)*((()(1)((0)*))))))))|((000100101111)(0)((110

001)*(((110)(0)((01)*(((0)(1)((0)*)))))|((11000)(1)((10)*((()(1)((0)*)))))))

)|((00010010)(1)((111000)*(((1110)(0)((01)*(((0)(1)((0)*)))))|(()(1)((10)*((

()(1)((0)*))))))))|((000100)(1)((011100)*(((01110)(0)((01)*(((0)(1)((0)*))))

)|((0)(1)((10)*((()(1)((0)*))))))))|((00010010111101)(1)((001110)*((()(0)((0

1)*(((0)(1)((0)*)))))|((00)(1)((10)*((()(1)((0)*))))))))))))
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