Skip to main content

Optimized Coordination and Simulation for Industrial Human Robot Collaborations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 399))

Abstract

For years, the manufacturing industry has been investing substantial amounts of research and development work for the implementation of hybrid teams of human workers and robotic units. The composition of hybrid teams requires an optimal coordination of individual players with fundamentally different characteristics and skills. In this paper, we present a highly configurable simulation environment supporting end-users, e.g. manufacturing planners, to optimally prepare, evaluate and improve the collaboration of hybrid teams in the scope of production lines. For generating the optimal task assignment, a GPU-based high-performance optimizer is introduced into the simulation environment. The framework is embedded in a web-based distributed infrastructure that models and provides the involved components (digital human models, robots, visualization environment) as resources. We illustrate the approach with a use case originating from the aircraft industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Unity3D: https://unity3d.com.

  2. 2.

    https://www.w3.org/WoT/WG/.

  3. 3.

    https://www.w3.org/RDF/.

  4. 4.

    https://www.w3.org/TR/ldp/.

  5. 5.

    https://www.w3.org/TR/rdf-sparql-query/.

  6. 6.

    Not like EKs, where only the corresponding agent behaviors has access to.

  7. 7.

    Reasoning and Validation with SPIN: https://rdf4j.org/documentation/programming/spin/.

  8. 8.

    We are using the clingo solver from the Potsdam Answer Set Solving Collection: https://potassco.org/. To translate the RDF based AJAN knowledge base of an agent into ASP rules, we are using the approach of [20].

  9. 9.

    Used BT lib.: https://github.com/libgdx/gdx-ai/wiki/Behavior-Trees.

  10. 10.

    The description of resource actions respectively affordances is oriented to the action language A defined in [12].

  11. 11.

    Node.js: https://nodejs.org/en/.

  12. 12.

    Cytoscape: https://cytoscape.org/.

  13. 13.

    RDFBeans is an object-RDF mapping framework for Java: https://rdfbeans.github.io.

  14. 14.

    Plugin Framework for Java (PF4J): http://www.pf4j.org.

  15. 15.

    Unity: https://unity3d.com.

  16. 16.

    Open Source C# library for communicating with ROS: https://github.com/siemens/ros-sharp.

  17. 17.

    Tecnomatix: plm.automation.siemens.com/Tecnomatix.

  18. 18.

    FlexSim: www.FlexSim.com/FlexSim.

  19. 19.

    visTABLEtouch: www.vistable.de/visTABLEtouch-software.

  20. 20.

    SIMUL8: www.SIMUL8.com.

  21. 21.

    DELMIA: www.transcat-plm.com/software/ds-software/delmia.

References

  1. Abdelkafi, O., Chebil, K., Khemakhem, M.: Parallel local search on GPU and CPU with OpenCL Language. In: Proceedings of the First International Conference on Reasoning and Optimization in Information Systems. IEEE (2013)

    Google Scholar 

  2. Antakli, A., Hermann, E., Zinnikus, I., Du, H., Fischer, K.: Intelligent distributed human motion simulation in human-robot collaboration environments. In: Proceedings of the 18th International Conference oh Intelligent Virtual Agents, pp. 319–324. ACM (2018)

    Google Scholar 

  3. Antakli, A., et al.: Agent-based web supported simulation of human-robot collaboration. In: Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST), pp. 88–99 (2019)

    Google Scholar 

  4. Awad, R., Fechter, M., van Heerden, J.: Integrated risk assessment and safety consideration during design of HRC workplaces. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–10. IEEE (2017)

    Google Scholar 

  5. Bosse, S.: Mobile multi-agent systems for the internet-of-things and clouds using the javascript agent machine platform and machine learning as a service. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 244–253. IEEE (2016)

    Google Scholar 

  6. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU implementation of large neighborhood search for solving constraint optimization problems. In: Proceedings of the Twenty-first European Conference on Artificial Intelligence (2014)

    Google Scholar 

  7. Danilewski, P., Köster, M., Leißa, R., Membarth, R., Slusallek, P.: Specialization through dynamic staging. In: Proceedings of the 13th International Conference on Generative Programming: Concepts & Experiences (GPCE), pp. 103–112. ACM (2014)

    Google Scholar 

  8. Diaconescu, I.M., Wagner, G.: Modeling and simulation of web-of-things systems as multi-agent systems. In: Müller, J.P., Ketter, W., Kaminka, G., Wagner, G., Bulling, N. (eds.) MATES 2015. LNCS (LNAI), vol. 9433, pp. 137–153. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27343-3_8

    Chapter  Google Scholar 

  9. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans. Internet Technol. (TOIT) 2(2), 115–150 (2002)

    Article  Google Scholar 

  10. Fritzsche, L., Schönherr, R., Illmann, B.: Interactive simulation and ergonomics assessment of manual work with EMA - applications in product development and production planning. In: Advances in Applied Digital Human Modeling, pp. 49–58. AHFE (2014)

    Google Scholar 

  11. Garcia-Sanchez, F., Fernández-Breis, J.T., Valencia-Garcia, R., Gómez, J.M., Martinez-Béjar, R.: Combining semantic web technologies with multi-agent systems for integrated access to biological resources. J. Biomed. Inform. 41(5), 848–859 (2008). https://doi.org/10.1016/j.jbi.2008.05.007

    Article  Google Scholar 

  12. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 3(16) (1998). https://ep.liu.se/ea/cis/1998/016/index.html

  13. Gopinath, V., Johansen, K.: Risk assessment process for collaborative assembly-a job safety analysis approach. Procedia CIRP 44, 199–203 (2016)

    Article  Google Scholar 

  14. Groß, J., Köster, M., Krüger, A.: Fast and efficient nearest neighbor search for particle simulations. In: Computer Graphics & Visual Computing (CGVC). The Eurographics Association (2019)

    Google Scholar 

  15. Guinard, D., Trifa, V.: Towards the web of things: web mashups for embedded devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM), vol. 15 (2009)

    Google Scholar 

  16. Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space. Synth. Lect. Semant. Web Theory Technol. 1(1), 1–136 (2011)

    Article  Google Scholar 

  17. Herrmann, E., et al.: Motion data and model management for applied statistical motion synthesis. In: Smart Tools and Apps for Graphics. The Eurographics Association (2019)

    Google Scholar 

  18. Herrmann, E., Manns, M., Du, H., Hosseini, S., Fischer, K.: Accelerating statistical human motion synthesis using space partitioning data structures. Comput. Animat. Virtual Worlds 28(3–4), e1780 (2017)

    Article  Google Scholar 

  19. Holden, D., Komura, T., Saito, J.: Phase-functioned neural networks for character control. ACM Trans. Graph. (TOG) 36(4), 42 (2017)

    Article  Google Scholar 

  20. Ianni, G., Martello, A., Panetta, C., Terracina, G.: Efficiently querying RDF (S) ontologies with answer set programming. J. Log. Comput. 19(4), 671–695 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kashevnik, A., Teslya, N., Yablochnikov, E., Arckhipov, V., Kipriianov, K.: Development of a prototype cyber physical production system with help of smart-M3. In: IECON 2016–42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 4890–4895. IEEE (2016)

    Google Scholar 

  22. Khriyenko, O., Nagy, M.: Semantic web-driven agent-based ecosystem for linked data and services. In: Proceedings of the Third International Conferences on Advanced Service Computing, pp. 25–30 (2011)

    Google Scholar 

  23. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  24. Köster, M., Groß, J., Krüger, A.: FANG: fast and efficient successor-state generation for heuristic optimization on GPUs. In: Wen, S., Zomaya, A., Yang, L.T. (eds.) ICA3PP 2019. LNCS, vol. 11944, pp. 223–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38991-8_15

    Chapter  Google Scholar 

  25. Köster, M., Groß, J., Krüger, A.: Parallel tracking and reconstruction of states in heuristic optimization systems on GPUs. In: Parallel and Distributed Computing, Applications and Technologies. International Conference on Parallel and Distributed Computing, Applications and Technologies. Springer (2019)

    Google Scholar 

  26. Köster, M., Krüger, A.: Adaptive position-based fluids: Improving performance of fluid simulations for real-time applications. Int. J. Comput. Graph. Animat. (IJCGA) 6(3), 1–16 (2016)

    Google Scholar 

  27. Köster, M., Leißa, R., Hack, S., Membarth, R., Slusallek, P.: Platform-specific optimization and mapping of stencil codes through refinement. In: Proceedings of the First International Workshop on High-Performance Stencil Computations, pp. 1–6 (2014)

    Google Scholar 

  28. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5420–5427. IEEE (2014)

    Google Scholar 

  29. Meneguzzi, F.R., Zorzo, A.F., da Costa Móra, M.: Propositional planning in BDI agents. In: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC 2004, pp. 58–63. ACM (2004)

    Google Scholar 

  30. Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. (TOG) 31(6), 153 (2012)

    Article  Google Scholar 

  31. Nguyen, H., Ciocarlie, M.T., Hsiao, K., Kemp, C.C.: ROS commander (ROSCo): behavior creation for home robots. In: 2013 IEEE International Conference on Robotics and Automation, pp. 467–474 (2013)

    Google Scholar 

  32. Ore, F., Hanson, L., Delfs, N., Wiktorsson, M.: Virtual evaluation of industrial human-robot cooperation: an automotive case study. In: 3rd International Digital Human Modeling Symposium. Elsevier (2014)

    Google Scholar 

  33. Parastatidis, S., Webber, J., Silveira, G., Robinson, I.S.: The role of hypermedia in distributed system development. In: Proceedings of the First International Workshop on RESTful Design, pp. 16–22. ACM (2010)

    Google Scholar 

  34. Paxton, C., Hundt, A., Jonathan, F., Guerin, K., Hager, G.D.: CoSTAR: instructing collaborative robots with behavior trees and vision. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 564–571. IEEE (2017)

    Google Scholar 

  35. Pedrocchi, N., Vicentini, F., Matteo, M., Tosatti, L.M.: Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. (2013)

    Google Scholar 

  36. Pfisterer, D., et al.: SPITFIRE: toward a semantic web of things. IEEE Commun. Mag. 49(11), 40–48 (2011). https://doi.org/10.1109/MCOM.2011.6069708

    Article  Google Scholar 

  37. Quigley, M., e al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

    Google Scholar 

  38. Schreiber, W., Zürl, K., Zimmermann, P. (eds.): Web-basierte Anwendungen Virtueller Techniken: Das ARVIDA-Projekt - Dienste-basierte Software-Architektur und Anwendungsszenarien für die Industrie. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-52956-0

  39. Schubotz, R., Vogelgesang, C., Antakli, A., Rubinstein, D., Spieldenner, T.: Requirements and specifications for robots, linked data and all the REST. In: Proceedings of Workshop on Linked Data in Robotics and Industry 4.0 (LIDARI). CEUR (2017)

    Google Scholar 

  40. Sheth, A.P.: Changing focus on interoperability in information systems: from system, syntax, structure to semantics. In: Goodchild, M., Egenhofer, M., Fegeas, R., Kottman, C. (eds.) Interoperating Geographic Information Systems. The Springer International Series in Engineering and Computer Science, vol. 495, pp. 5–29. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5189-8_2

    Chapter  Google Scholar 

  41. Spieldenner, T., Schubotz, R., Guldner, M.: ECA2LD: from entity-component-attribute runtimes to linked data applications. In: Proceedings of the International Workshop on Semantic Web of Things for Industry 4.0. Springer (2018)

    Google Scholar 

  42. Tsarouchi, P., Makris, S., Chryssolouris, G.: Human-robot interaction review and challenges on task planning and programming. Int. J. Comput. Integr. Manuf. 29(8), 916–931 (2016)

    Article  Google Scholar 

  43. Verborgh, R., Steiner, T., Van Deursen, D., Van de Walle, R., Valles, J.G.: Efficient runtime service discovery and consumption with hyperlinked RESTdesc. In: 2011 7th International Conference on Next Generation Web Services Practices, pp. 373–379. IEEE (2011)

    Google Scholar 

  44. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018)

    Article  Google Scholar 

  45. W3C: SPARQL 1.1 Protocol (2008). https://www.w3.org/TR/sparql11-protocol/. Accessed 16 Jan 2020

  46. W3C: SPARQL 1.1 Query Language. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/ (2013). Accessed 16 Jan 2020

  47. W3C: SPARQL 1.1 Update. https://www.w3.org/TR/sparql11-update/ (2013). Accessed 16 Jan 2020

  48. Xu, X., Bessis, N., Cao, J.: An autonomic agent trust model for IoT systems. Procedia Comput. Sci. 21, 107–113 (2013)

    Article  Google Scholar 

  49. Zinnikus, I., et al.: Integrated semantic fault analysis and worker support for cyber-physical production systems. In: 2017 IEEE 19th Conference on Business Informatics (CBI), vol. 1, pp. 207–216. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper has been funded by the ITEA 3 project MOSIM (grant no. 01IS18060C) as well as by the German Federal Ministry of Education and Research (BMBF) through the projects Hybr-iT (grant no. 01IS16026A) and REACT (grant no. 01/W17003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Antakli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antakli, A. et al. (2020). Optimized Coordination and Simulation for Industrial Human Robot Collaborations. In: Bozzon, A., Domínguez Mayo, F.J., Filipe, J. (eds) Web Information Systems and Technologies. WEBIST 2019. Lecture Notes in Business Information Processing, vol 399. Springer, Cham. https://doi.org/10.1007/978-3-030-61750-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61750-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61749-3

  • Online ISBN: 978-3-030-61750-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics